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DESIGN-BASED AND NETWORK SAMPLING-BASED UNCERTAINTIES
IN NETWORK EXPERIMENTS

KENSUKE SAKAMOTO AND YUYA SHIMIZU

Abstract. OLS estimators are widely used in network experiments to estimate spillover ef-

fects via regressions on exposure mappings that summarize treatment and network structure.

We study the causal interpretation and inference of such OLS estimators when both design-

based uncertainty in treatment assignment and sampling-based uncertainty in network links are

present. We show that correlations among elements of the exposure mapping can contaminate

the OLS estimand, preventing it from aggregating heterogeneous spillover effects for clear causal

interpretation. We derive the estimator’s asymptotic distribution and propose a network-robust

variance estimator. Simulations and an empirical application reveal sizable contamination bias

and inflated spillover estimates.

Keywords: Network Sampling, Design-based Inference, Network Experiments, Spillover Effects,
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1. Introduction

Network experiments, or randomized controlled trials (RCTs) on networks, have become in-
creasingly common in applied economics (e.g., Cai, de Janvry and Sadoulet, 2015; Dizon, Gong
and Jones, 2020; Carter, Laajaj and Yang, 2021; Fernando, 2021; Beaman, BenYishay, Ma-
gruder and Mobarak, 2021). A central objective of these experiments is to estimate the “spillover
effect” of policy interventions as they propagate through networks. For example, Cai et al.
(2015) estimate spillover effects from randomly assigned information sessions on rice farmers’
decisions to purchase a weather insurance product in Chinese villages. In this article, we develop
a comprehensive theoretical framework for ordinary least squares (OLS) estimators in network
experiments, explicitly accounting for both design-based uncertainty in treatment assignment
and sampling-based uncertainty in network links. Our theory is motivated by two key gaps
between empirical practice in applied work and existing econometric theory.

The first gap lies in the choice of estimator. In applications, researchers predominantly use
OLS estimators to estimate spillover effects, employing exposure mappings that summarize treat-
ment status and network structure. In our survey of 29 papers analyzing network experiments,
published in the “top 5” economics journals and two leading field journals, all of the studies report
using the OLS estimator, while only two papers use propensity score-based estimators.1 This
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pattern stands in contrast to the theoretical literature on inference in network experiments (e.g.,
Aronow and Samii, 2017; Leung, 2022; Gao and Ding, 2023), which provides inference results for
inverse probability weighting (IPW) estimators.

The other gap is due to ignoring a source of randomness. In many applied cases, researchers
need to collect network information through surveys. This collection process can introduce an
extra layer of uncertainty beyond design-based uncertainty. Moreover, the collected network may
only partially capture the true network governing the propagation mechanism. In contrast, the
theoretical literature on causal inference in network experiments typically abstracts away from
sampling-based uncertainty by assuming that the data correspond to the entire population and
that the observed network is complete.

To fill these gaps, we make three contributions. In our first contribution, we develop a
novel framework that incorporates both design-based randomness in treatment assignment and
sampling-based randomness in the network links. Our framework involves a finite population
of n units, where we randomly sample units and allocate treatments to them. We explicitly
incorporate a network sampling process, a commonly used snowball-sampling design, where each
sampled unit reports their friends either within the sample (in-sample scheme) or from the entire
population (out-of-sample scheme). In this setup, unlike in non-network experiments, sampling-
based uncertainty arises from two sources: (i) which units are sampled, and (ii) which links
are observed. We consider potential outcomes that depend on the entire treatment vector, thus
violating the stable unit treatment value assumption (SUTVA). To address the resulting dimen-
sionality problem, we assume that the potential outcomes are linear in an exposure mapping, a
set of sufficient statistics summarizing treatment status and network structure. The researcher
specifies the exposure mapping on their own, based on economic theory or intuition. Impor-
tantly, we do not assume that the user-specified exposure mapping is correctly specified; it may
differ from the true exposure mapping in both functional form and dimension. Also, misspecified
exposure mappings allow us to incorporate censored network links in a unified way.

As our second contribution, we investigate whether the estimands associated with the OLS
estimator can be interpreted as causal spillover effects. We distinguish two causal targets: the
population-level estimand and the sample-level estimand. The population-level estimand is de-
fined as the weighted average of the treatment effect vector across the entire population, including
those who are not sampled, with complete network information. On the other hand, the sample-
level estimand is defined as the sample average of the treatment effect vector across the sampled
units, with the sampled network information. We show that both types of estimands can be
contaminated: each element in the estimands may fail to capture the corresponding true causal
effect in the potential outcomes because it is influenced by effects from other dimensions. With
heterogeneous treatment effects, correlations among elements in the exposure mapping (e.g., the
proportion of treated friends and the proportion of friends’ treated friends) blur the distinction

Economic Studies, American Economic Journal: Applied Economics, and Journal of Development Economics.
We searched for articles that listed “networks” and either “field experiments” or “randomized trial” as keywords
on the Web of Science platform. This search resulted in 52 papers, of which 29 conducted network experiments
and are mentioned in the text. These papers are referenced in Appendix D.
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between the true causal effects in one dimension and those in another. Although the population-
level causal estimand can be free from contamination if the exposure mapping is defined such that
there is no correlation among its elements, the sample-level causal estimand can still be subject
to contamination, and thus lacks causal interpretability, due to network sampling. Misclassified
links can create undesirable correlations between the observed and true exposure mapping across
different dimensions. As a result, the two causal estimands can remain distinct even in large
samples unless an additional assumption is imposed.

In our third contribution, we derive asymptotic theory for the OLS estimator and find con-
ditions under which the OLS estimator approximates the estimands. We show that the OLS
estimator is consistent for the sample-level causal estimand, conditionally or unconditionally on
the sampling uncertainty. However, because the sample-level causal estimand generally lacks
causal interpretability, results from the OLS estimation should be interpreted with caution. If
the exposure mapping is correctly specified and there is no potential correlation between the
true and observed exposure mappings, the sample-level causal estimand is consistent for the
population-level causal estimand; thus, we can guarantee a clear interpretation for the OLS es-
timator. We further derive the estimator’s asymptotic distribution and provide a conservative
network heteroskedasticity and autocorrelation consistent (HAC) variance estimator.

As an empirical application, we revisit the dataset used in Cai et al. (2015) to estimate the
spillover effects of information sessions on rice farmers’ understanding of weather insurance.
We define the exposure mapping as (i) one’s own treatment status, (ii) the proportion of one’s
immediate friends who are treated, and (iii) the proportion of one’s friends-of-friends who are
treated. We find that the third element (iii), as constructed by Cai et al. (2015), inadvertently
includes the treatment status of immediate friends, leading to contamination bias in the estimated
spillover effects. Comparing the OLS estimators with and without this overlap, we find that the
estimated spillover effects from the second-order links (iii) are similar in magnitude to those
from the first-order links (ii) when the overlap is present but become significantly smaller when
it is excluded. We observe similar results in simulation experiments with the same exposure
mappings. These findings highlight the need for caution in specifying and calculating exposure
mappings in practice, as contamination bias can lead to misleading conclusions about spillover
effects.

This paper contributes to the literature on design-based inference in network experiments
(Aronow and Samii, 2017; Leung, 2022; Gao and Ding, 2023). Previous works have primarily
focused on design-based uncertainty, where treatment assignment is the only source of random-
ness and complete network information is assumed to be available without sampling uncertainty.
Additionally, these works have mainly considered IPW estimators, which allow for direct estima-
tion of causal spillover effects, while the OLS estimator has received less attention. To focus on
IPW estimators, these works typically assume that the exposure mapping takes discrete values,
such as an indicator of whether a unit has at least one treated friend.2 In contrast, this paper
considers both design-based and sampling-based uncertainties with an explicit network collection

2Gao and Ding (2023) discusses potential application of IPW-based estimators to continuous exposure mappings.
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process, and focuses on the OLS estimator with exposure mappings as regressors, which is widely
used in empirical applications and allows for continuous exposure mappings.

This paper also relates to the literature on simultaneous design-based and sampling-based
inference (see Abadie, Athey, Imbens and Wooldridge, 2020; Xu and Wooldridge, 2022; Abadie,
Athey, Imbens and Wooldridge, 2023; Viviano, 2024). Our framework extends the approach of
Abadie et al. (2020) to the network setting by allowing for both design-based and sampling-based
uncertainties in network experiments, and by focusing on both population-level and sample-level
estimands. We differ from Abadie et al. (2020) in several important respects. First, we explicitly
model network sampling, where the observed network may be only partially observed. Second,
we study the OLS estimator with exposure mappings as regressors, which induces dependence
among outcomes and between regressors and sampling indicators, features not present in their
analysis. Third, we provide an element-wise causal interpretation of the estimands and the
OLS estimator, which is not addressed in their work. Relatedly, Viviano (2024) also considers
both design-based and sampling-based uncertainties, including uncertainty arising from network
sampling. However, while his approach assumes that all relevant network information is observed,
our framework allows for the possibility that some relevant network information is unobserved due
to sampling uncertainty. Additionally, while Viviano (2024) focuses on a sample-level estimand
that maximizes a welfare measure, our study is concerned with inference for both population-level
and sample-level causal estimands, emphasizing the potential divergence between the two.

This paper is also related to the literature studying the impact of network data collection on
parameters of interest (Chandrasekhar and Lewis, 2011; Griffith, 2022; Hsieh, Hsu, Ko, Kovarik
and Logan, 2024; Lewbel, Qu and Tang, 2023). While these papers share a similar motivation in
that the network sampling process can affect the estimation of spillover effects, they primarily
focus on the potential bias of estimators with respect to homogeneous parameters due to network
sampling. In contrast, this paper focuses on the causal interpretability of the OLS estimator
with heterogeneous spillover effects. This distinction is important because attenuation bias, as
highlighted for example in Chandrasekhar and Lewis (2011), does not necessarily hinder learning
about spillover effects if the estimator preserves the sign of the underlying effects. However, we
show that the OLS estimator with exposure mappings may not preserve the sign of the true
spillover effects due to contamination bias, potentially leading to misleading conclusions.

More broadly, this paper contributes to the literature on the causal interpretability of esti-
mators in linear regressions with heterogeneous treatment effects (Angrist, 1998; Borusyak and
Hull, 2024; Goldsmith-Pinkham, Hull and Kolesár, 2022). In particular, Goldsmith-Pinkham
et al. (2022) show that the OLS estimator with multi-dimensional treatment indicators can be
contaminated in the presence of heterogeneous treatment effects, which aligns with our findings
in Theorem 2. There are two important differences. First, we consider a finite population model,
whereas Goldsmith-Pinkham et al. (2022) focus on an infinite population model, making it non-
trivial to extend their results to our setting. Second, we allow for general exposure mappings
as regressors, while Goldsmith-Pinkham et al. (2022) restrict attention to mutually exclusive
multi-dimensional treatment indicators. In our context, contamination bias arises from overlaps
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in the treatment status across elements of the exposure mapping, whereas such overlaps are not
possible in the non-network setup of Goldsmith-Pinkham et al. (2022).

The remainder of this paper is organized as follows. Section 2 introduces the framework for
network sampling, the model, and assumptions. Section 3 presents the main results, including
the causal interpretation and asymptotic theory. Section 4 proposes a network heteroskedastic-
ity and autocorrelation consistent (HAC) estimator. Section 5 provides a simulation study to
illustrate the finite sample properties of the proposed estimator. Section 6 applies the proposed
method to a real-world dataset. Finally, Section 7 concludes the paper. Appendix A discusses
how to estimate the nuisance parameters consistently, Appendix B contains technical lemmas,
Appendix C contains proofs, and Appendix D lists the papers we use for the survey of network
experiment research.

2. Model

In this section, we first outline our framework for modeling network experiments. We then
introduce the estimands of interest, which are defined both for the entire population and for the
sampled group, as well as the OLS estimator used to estimate these estimands.

2.1. Population. We consider a finite population model where the sources of randomness are
both design- and sampling-based as in Abadie et al. (2020). There are finitely many units
(n < ∞) in the population, denoted by Nn = {1, ..., n}. These units are connected through the
network that is represented by an adjacency matrix An = [An,i,j ]i,j∈Nn ∈ {0, 1}n×n. We assume
that the network is undirected (An,i,j = An,j,i) and has no self-loops (An,i,i = 0). Each unit i is
characterized by a vector of covariates Zn,i ∈ Zn ⊂ RdZ , potential outcomes Y ∗

n,i(·) ∈ Yn ⊂ R
that depend on the entire vector of binary treatments Dn = [Dn,i]i∈Nn ∈ {0, 1}n. We consider
the setup where the researcher assigns treatments only to the sampled units, but the spillover
to the unsampled units is allowed. The covariates Zn,i include both network information (e.g.,
i’s degree degn,i =

∑
j ̸=iAn,i,j) and individual information (e.g., i’s age). Also, the potential

outcomes may violate the Stable Unit Treatment Value Assumption (SUTVA) by allowing for
others’ treatment status as inputs.

2.2. Sampling. From a finite population of n units, we draw a sample of N =
∑n

i=1Rn,i units,
where Rn,i ∈ {0, 1} is the sampling indicator for the i-th unit: Rn,i = 1 if i is in the sample
and otherwise Rn,i = 0. Given the sampling indicator vector Rn, partial elements of the true
network An are sampled. We call the sampled network under the sampling indicator vector Rn

as Ãn(Rn). When the dependence on Rn is clear in the context, we simply write it as Ãn. In
this paper, we focus on so-called snowball sampling for sampling Ãn. Snowball sampling is often
implemented by asking for network links of sampled units.3 The researcher decides to include
population units as the sampled units’ friends (out-of-sample) or not (in-sample).

In the in-sample case, we observe Ãn = RnR
′
n ⊙ An where ⊙ is the element-wise product

and the (i, j) component is Ãn,i,j = Rn,iRn,jAn,i,j . In the out-of-sample case, we observe Ãn =

3In some literature, however, “snowball sampling“ refers to chain referral sampling, which recruits new participants
through referrals from existing study participants (Biernacki and Waldorf, 1981).
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(1n1
′
n − (1n −Rn)(1n −Rn))

′ ⊙An, where Ãn,i,j = max{Rn,i, Rn,j}An,i,j . In-sample and out-
of-sample networks are illustrated in Figure 1. In the figure, the sampled units are in blue, and
the unsampled units are in light gray. The sampled network links are in a solid black line, and the
unsampled network links are in a dashed gray line. In practice, if the researcher asks the sampled
units to list their friends from the list of the sampled units, the in-sample network is sampled. If
the researcher asks to list their friends from the population, the out-of-sample network is sampled.
The reader can refer to Section 5.3 of Kolaczyk and Csárdi (2014) for further examples of network
sampling.

Importantly, we distinguish between the sampled network and the actually observed network,
which may be a censored version of the sampled network. We treat censoring as arising from a
misspecified exposure mapping function, as defined below (see also Remark 2). For example, if
network sampling is conducted in the out-of-sample manner, the researcher could, in principle,
observe all links that each sampled unit has in the population. However, in practice, there is
often a cap on the number of links each sampled unit can report, leading to censoring and a
discrepancy between the observed and sampled networks.

(a) In-sample (b) Out-of-sample

Note: Note: Blue nodes indicate sampled units, while light gray nodes denote non-sampled units. Solid black
links are observable to the researcher; dashed gray links are unobserved.

Figure 1. Comparison of in-sample (left) and out-of-sample (right) networks.

We denote the observed covariates by Z̃n,i, which may differ from Zn,i due to network sam-
pling and censoring. For example, if Zn,i includes i’s degree, then in the absence of censor-
ing, Z̃n,i contains i’s degree computed from the sampled network Ãn: d̃egn,i =

∑
j ̸=i Ãn,i,j .

With censoring, then Z̃n,i contains i’s degree computed from the observed (censored) network:
d̃egn,i =

∑
j ̸=iCn,i,jÃn,i,j , where Cn,i,j is the censoring indicator, equal to 0 when a link is

censored and 1 otherwise. Note that we allow both Zn,i and Z̃n,i to depend on Rn.
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Throughout the paper, we maintain the following assumption regarding the sampling process
and the assignment mechanism.

Assumption 1. (i) Random sampling:

Rn,i ∼ Bernoulli(ρn) i.i.d.,

where ρn ∈ (0, 1] is a sequence of sampling probability such that ρn → ρ ∈ (0, 1].
(ii) Network sampling: Given a fixed entire network sequence An ∈ {0, 1}n×n, the (i, j)-

element of sampled network Ãn is generated by the in-sample way Ãn,i,j = Rn,iRn,jAn,i,j or the
out-of-sample way Ãn,i,j = max{Rn,i, Rn,j}An,i,j.

(iii) Treatment assignment mechanism:

Dn,i ∼ Bernoulli(Rn,ipn,i) independently.

Remark 1. Assumption 1 (i) excludes the multi-wave snowball sampling since Rn,i depends
on Rn,j for some j ̸= i and the network structure in that case. Assumption 1 (ii) excludes
any censoring on Ãn. However, we can treat the censoring as a misspecified exposure mapping.
See also Example 3. Assumption 1 (iii) implies Dn,i = 0 if Rn,i = 0, which means we treat
only the sampled units. Since Assumption 1 (iii) does not require the identical draws, pn,i
could depend on An, Zn,i or other observed characteristics of unit i. We can equivalently write
Assumption 1 (iii) as Dn,i = Rn,iD

∗
n,i, where D∗

n,i is the latent treatment indicator generated by
D∗

n,i ∼ Bernoulli(pn,i) independently. ■

2.3. Potential Outcome. As discussed above, each unit’s potential outcome Y ∗
n,i(·) is a function

of the full treatment vector Dn. By Assumption 1 (iii), we can write Dn = Rn ⊙ D∗
n, where

D∗
n = [D∗

n,i]i∈Nn . Following the literature (e.g., Aronow and Samii, 2017), we assume that
there is an exposure mapping Tn,i ∈ Tn ⊂ RdT that essentially determines i’s potential outcome
by summarizing the network structure and the treatment status vector. We consider a linear
potential outcome model, so that for each t ∈ Tn, Y ∗

n,i(t) is defined as follows.

Assumption 2. For all t ∈ Tn,

Y ∗
n,i(t) = t′θn,i + νn,i,

where θn,i and νn,i are non-stochastic.

Although a linear model may seem restrictive, when |Tn| is finite (e.g., Tn = {0, 1}2), this
assumption is without loss of generality as discussed in Abadie et al. (2020).

2.4. Exposure Mapping. Let the true exposure mapping be Tn,i = g(i,Dn,An) ∈ Tn ⊂ RdT ,
where g : Nn×{0, 1}n×{0, 1}n×n → Tn is a function that generates the true exposure mapping for
each unit. Specifically, for unit i, it takes (i) i’s index, (ii) the treatment vector Dn, and (iii) the
true network An as inputs. This paper allows the researcher to misspecify the functional form of
g. We denote this misspecified exposure mapping function by g̃n : Nn×{0, 1}n×{0, 1}n×n → T̃n,
where T̃n ∈ Rd

T̃ . Note that the dimensions dT and d
T̃

may differ. The functional form g̃n could
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depend on the sample size n (as Example 4), but for notational simplicity, we omit the subscript
n. We assume that dimensions dT and d

T̃
are constants independent of n.

If g̃ = g, then the observed exposure mapping T̃n,i can be written as T̃n,i = g(i,Dn, Ãn). That
is, the only difference between the true exposure mapping and the observed exposure mapping
is the network input, between An and Ãn. More generally, if the researcher misspecifies g as g̃,
then the observed exposure mapping is T̃n,i = g̃(i,Dn, Ãn). In this case, the dimensions dT and
d
T̃

may differ.
Below, we provide four examples of exposure mappings.

Example 1. Suppose that the true exposure mapping is i’s own treatment indicator:

Tn,i = g(i,Dn,An) = Dn,i = Rn,iD
∗
n,i.

Note that the exposure mapping does not depend on the network information, and as long as the
researcher correctly specifies the exposure mapping g = g̃, we have Tn,i = T̃n,i for all i ∈ Nn.

Example 2. Suppose that the true exposure mapping is an indicator of the existence of at least
one treated friend:

Tn,i = g(i,Dn,An) = 1

∑
j ̸=i

An,i,jRn,jD
∗
n,j > 0

 ,

and the researcher correctly specifies the exposure mapping as T̃n,i = g(i,Dn, Ãn). Thus, for the
in-sample case (Ãn,i,j = Rn,iRn,jAn,i,j),

T̃n,i = 1

∑
j ̸=i

Rn,iRn,jAn,i,jRn,jD
∗
n,j > 0

 = 1

Rn,i

∑
j ̸=i

An,i,jRn,jD
∗
n,j > 0

 .

Thus, when Rn,i = 1, we have Tn,i = T̃n,i. For the out-of-sample case (Ãn,i,j = max{Rn,i, Rn,j}An,i,j),

T̃n,i = 1

∑
j ̸=i

max{Rn,i, Rn,j}An,i,jRn,jD
∗
n,j > 0

 = 1

∑
j ̸=i

An,i,jRn,jD
∗
n,j > 0

 ,

and we have Tn,i = T̃n,i for all i ∈ Nn.

Example 3. Let g be the same as in Example 2. Conversely, suppose that the researcher mis-
specifies g̃ due to the censoring as

T̃n,i = g̃(i,Dn, Ãn) = g(i,Dn,Cn(Ãn)⊙ Ãn) = 1

∑
j ̸=i

Cn,i,j(Ãn)Ãn,i,jRn,jD
∗
n,j > 0

 ,

where Cn(Ãn) is the censoring indicator matrix whose (i, j)-element is Cn,i,j(Ãn) ∈ {0, 1}, a
binary variable that indicates whether unit j is censored from i’s perspective. The censoring
indicator can be a random variable, as we allow it to be an unknown function of the sampled
network Ãn. For example, Cn,i,j = 1 when unit i (or j) is asked to list their five closest friends
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and j (or i) is one of them.4 In this example, g ̸= g̃ in general and misspecification occurs due
to the censoring.

Remark 2. We distinguish between the sampled network Ãn and the observed network after
censoring Cn(Ãn) ⊙ Ãn, and the discrepancy is framed as the misspecification of the exposure
mapping. This framework is useful for separating the sampling effect from the censoring. In
the extreme case with ρn = 1, we sample the entire network Ãn = An, but the censoring still
matters as we observe Cn(An)⊙An. ■

For convenience, we will omit the notational dependence of Cn on Ãn.

Remark 3. The dependence of Cn on Ãn is justified as follows. In practice, the censored
in-sample network is observed if the researcher asks the sampled unit to list a fixed number of
closest friends from the sampled friends. Thus, it usually depends on [Ãn,i,j ]j∈Nn . The censored
out-of-sample network is observed if the researcher asks i with Rn,i = 1 to list a fixed number
of closest friends from their friends in population [An,i,j ]j∈Nn . Since Ãn,i,j = An,i,j holds for
Rn,i = 1 for the out-of-sample network, the censoring depends on [Ãn,i,j ]j∈Nn . We also allow the
arbitrary dependence of Cn on the other deterministic variables like one’s preference over their
friends, which is a benefit of the design-based framework. ■

Example 4. Suppose that the true exposure mapping is a vector of a direct treatment, a spillover
treatment through a fraction of treated peers, and their interaction term:

Tn,i = g(i,Dn,An) =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
, Rn,iD

∗
n,i ×

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j

)
.

By convention, we usually set
∑

j ̸=iAn,i,jRn,jD
∗
n,j/

∑
j ̸=iAn,i,j = 0 if

∑
j ̸=iAn,i,j = 0 to negate

the spillover effect. Suppose that the researcher misspecifies g̃ as

T̃n,i = g̃(i,Dn, Ãn) =

Rn,iD
∗
n,i,1

∑
j ̸=i

Ãn,i,jRn,jD
∗
n,j > 0


 .

In this specification, it is evident that g ̸= g̃ because dT > d
T̃
. The misspecified g̃ accounts only

for the direct effect and the spillover effect represented by an indicator of the presence of at least
one treated friend. Consequently, not only do the dimensions differ, but the structures of the
variables capturing spillover effects are also distinct.

With censoring, g̃ can be written as

T̃n,i = g̃(i,Dn, Ãn) =

Rn,iD
∗
n,i,1

∑
j ̸=i

Cn,i,jÃn,i,jRn,jD
∗
n,j > 0


 .

2.5. Estimands and Estimator. To facilitate the introduction of our estimands and OLS
estimator, we first transform the exposure mappings. Define

Xn,i = Tn,i − ΛnZn,i,

4We can define Cn,i,i(Ãn) arbitrarily because An,i,i = 0.
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and
X̃n,i = T̃n,i − Λ̃nZ̃n,i,

where

Λn =

(
n∑

i=1

E[Tn,iZ ′
n,i]

)(
n∑

i=1

E[Zn,iZ
′
n,i]

)−1

,

and

Λ̃n =

(
n∑

i=1

Rn,iE[T̃n,i|Rn]Z̃
′
n,i

)(
n∑

i=1

Rn,iZ̃n,iZ̃
′
n,i

)−1

.

That is, Xn,i is the population residual of the regression of Tn,i on Zn,i, and X̃n,i is the residual
of the regression of T̃n,i on Z̃n,i using sampled units. Since we know the treatment assignment
distribution, we can calculate E[T̃n,i|Rn] analytically.

Table 1 summarizes the conditional expectation of widely used exposure mappings when the
assignment probability is homogeneous: D∗

n,i ∼ Bernoulli(pn) i.i.d. The table focuses on the
case where the exposure mapping is scalar. The researcher applies it element-wise for multi-
dimensional cases. For the second neighborhood, the expectation can be calculated similarly.
See also Example 9 below for the modification on multi-dimensional cases with the second neigh-
borhood.

Table 1. Conditional Expectation of Exposure Mappings Frequently Used in
Applied Research

Exposure Mapping T̃n,i = g(i,Dn, Ãn) E
[
T̃n,i | Rn

]
Individual Treatment Rn,iD

∗
n,i Rn,ipn

Treated Friends Share
∑

j ̸=i Ãn,i,jRn,jD
∗
n,j∑

j ̸=i Ãn,i,j
pn ×

∑
j ̸=i Ãn,i,jRn,j∑

j ̸=i Ãn,i,j

Treated Friends Number
∑

j ̸=i Ãn,i,jRn,jD
∗
n,j pn ×

∑
j ̸=i Ãn,i,jRn,j

Treated Friends Existence 1
{∑

j ̸=i Ãn,i,jRn,jD
∗
n,j > 0

}
1− (1− pn)

∑
j ̸=i Ãn,i,jRn,j

Note: Assume that Rn,i ∼ Bernoulli(ρn) i.i.d. and D∗
n,i ∼ Bernoulli(pn) i.i.d. We usually set∑

j ̸=i An,i,jRn,jD
∗
n,j/

∑
j ̸=i An,i,j = 0 if

∑
j ̸=i An,i,j = 0, as a convention.

To summarize relevant moments of the data, define the population matrix Ωn and the sample
matrices Q̃n and Ω̃n:

Ωn =
1

n

n∑
i=1

E


 Yn,i

Xn,i

Zn,i


 Yn,i

Xn,i

Zn,i


′ ≡

 ΩY Y
n ΩY X

n ΩY Z
n

ΩXY
n ΩXX

n ΩXZ
n

ΩZY
n ΩZX

n ΩZZ
n

 ,

Q̃n =
1

N

n∑
i=1

Rn,i

 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

≡

 Q̃Y Y
n Q̃Y X

n Q̃Y Z
n

Q̃XY
n Q̃XX

n Q̃XZ
n

Q̃ZY
n Q̃ZX

n Q̃ZZ
n

 ,
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and

Ω̃n =
1

N

n∑
i=1

Rn,iE


 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

| Rn

 ≡

 Ω̃Y Y
n Ω̃Y X

n Ω̃Y Z
n

Ω̃XY
n Ω̃XX

n Ω̃XZ
n

Ω̃ZY
n Ω̃ZX

n Ω̃ZZ
n

 .

Note that the expectation for Ωn is taken over Dn and Rn while the conditional expectation for
Ω̃n is taken over Dn conditional on Rn.

Our estimands of interest are(
θcausaln

γcausaln

)
=

(
ΩXX
n ΩXZ

n

ΩZX
n ΩZZ

n

)−1(
ΩXY
n

ΩZY
n

)
, (1)

and (
θcausal,sample
n

γcausal,sample
n

)
=

(
Ω̃XX
n Ω̃XZ

n

Ω̃ZX
n Ω̃ZZ

n

)−1(
Ω̃XY
n

Ω̃ZY
n

)
. (2)

These are causal estimands in the sense specified by Abadie et al. (2020). (θcausaln , γcausaln )′

concerns the population-level causal effects of intervention while the (θcausal,sample
n , γcausal,sample

n )

concerns the sample-level causal effects when the sampling is governed by Rn. (θcausaln , γcausaln )′

is a solution for the population moment condition:

1

n

n∑
i=1

E

[(
Xn,i

Zn,i

)(
Yn,i −X ′

n,iθ
causal
n − Z ′

n,iγ
causal
n

)]
= 0, (3)

and (θcausal,sample
n , γcausal,sample

n ) is a solution for the sample moment condition:

1

N

n∑
i=1

Rn,iE

[(
X̃n,i

Z̃n,i

)(
Yn,i − X̃ ′

n,iθ
causal,sample
n − Z̃ ′

n,iγ
causal,sample
n

)
| Rn

]
= 0. (4)

We study (i) whether the sample-level estimand can be estimated consistently (internal validity),
and, if so, (ii) how closely it approximates the population-level estimand (external validity). We
will also discuss whether each element of these estimands bears a causal interpretation, which is
not discussed in Abadie et al. (2020).

For the sample-level causal estimand, we consider the ordinary least squares estimator:(
θ̂n

γ̂n

)
=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1(
Q̃XY

n

Q̃ZY
n

)
. (5)

Equivalently, the moment condition is

1

n

n∑
i=1

Rn,i

(
X̃n,i

Z̃n,i

)(
Yn,i − X̃ ′

n,iθ − Z̃ ′
n,iγ
)
= 0. (6)

An alternative approach is to use the inverse probability weighting (IPW) estimator (e.g.,
Leung, 2022; Gao and Ding, 2023). A usual condition for the IPW estimator to work in a
network experimental setting is the individual level overlapping condition; in our notation, we
need to have P[T̃n,i = t|Rn] ∈ (η, 1 − η) almost surely for all i ∈ Nn and t ∈ Tn for some
η ∈ (0, 1/2). This overlapping condition is difficult to maintain in our sampling framework. For
example, consider a population of two connected units. Suppose the first unit is sampled, while
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the second is not. The exposure mapping is defined as the number of treated neighbors. In this
case, P[T̃n,1 = 1|Rn] = 0.

3. Main Results

In this section, we present the main results of this paper. We first discuss the population- and
sample-level estimands’ causal interpretation, then derive the asymptotic properties of the OLS
estimator for both.

3.1. Interpretability of the Causal Estimands. We need the following regularity conditions
for the causal estimands to be well-defined:

Assumption 3.

(i) (Uniform Boundedness): The sequence of potential outcomes Y ∗
n,i(·) is uniformly bounded,

i.e., there exists some constant Y > 0 such that |Y ∗
n,i(t)| ≤ Y < ∞ for all n, i ∈ Nn,

and t ∈ T .
(ii) The sequences of exposure mappings Tn,i and T̃n,i satisfy the following.

(a) (Uniform Boundedness): There exists some constant T such that ∥Tn,i∥, ∥T̃n,i∥ ≤
T <∞ almost surely for all n, i ∈ Nn.

(b) (Variation):
∑

i∈Nn
Var(Tn,i) is invertible and

∑
i∈Nn

Rn,iVar(T̃n,i | Rn) is almost
surely invertible for large enough n.

(iii) The sequences of covariates Zn,i and Z̃n,i satisfy the following.
(a) (Uniform Boundedness): There exists some constant Z such that ∥Zn,i∥, ∥Z̃n,i∥ ≤

Z <∞ almost surely for all n, i ∈ Nn.
(b) (Full Rank):

∑n
i=1 Zn,iZ

′
n,i is almost surely full-rank for large enough n, and

∑n
i=1Rn,i

Z̃n,iZ̃
′
n,i is almost surely invertible for large enough n.

Assumption 3 (iii) implies that the sequences of residualized exposure mappings Xn,i and X̃n,i

satisfy the following.

(a) (Uniform Boundedness): There exists some constant X such that ∥Xn,i∥, ∥X̃n,i∥ ≤ X <

∞ almost surely for all n, i ∈ Nn.
(b) (Full Rank):

∑
i∈Nn

E[Xn,iX
′
n,i] is invertible and

∑n
i=1Rn,iE[X̃n,iX̃

′
n,i|Rn] is almost

surely invertible for large enough n.

Remark 4. The uniform boundedness of the potential outcomes in Assumption 3 (i) is a stan-
dard assumption in the literature (e.g., Gao and Ding, 2023; Leung, 2022). Assumption 3 (ii-a)
rules out some network statistics in a large, dense network (e.g., a diverging degree). Assump-
tion 3 (ii-b) requires that the exposure mappings are not degenerate across the units. For
example, in Example 2, Assumption 3 (ii-b) is violated if the network is empty, An,i,j = 0 for
all i, j ∈ Nn, as 1{

∑
j ̸=iRn,jAn,i,jD

∗
n,j > 0} = 0 for all i ∈ Nn. Assumption 3 (iii-b) does not

exclude the constant term in Zn,i and Z̃n,i. Assumption 3 (ii-b) and (iii-b) are not as restrictive
as they seem since we have N > 0 a.s. for large enough n (Lemma 4). ■

We impose an additional condition on the exposure mapping:
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Assumption 4. There exists a sequence of matrices Ln such that

E[Tn,i|Rn] = LnZn,i a.s.

for large enough n. Similarly, there exists a sequence of matrices L̃n measurable with respect to
σ(Rn) such that

E[T̃n,i|Rn] = L̃nZ̃n,i a.s.

for large enough n.

This assumption is fairly weak, as it is automatically satisfied if E[Tn,i|Rn] and E[T̃n,i|Rn] are
included in Zn,i and Z̃n,i, respectively. Typically, in a field experiment, the experimenter knows
the assignment mechanism, so E[T̃n,i|Rn] can be computed either analytically or numerically and
included as covariates. As the following example shows, in some cases, it is sufficient to include
some network statistics in the covariates to satisfy this assumption.

Example 5. Consider a variant of Miguel and Kremer (2004)’s exposure mapping:

g(i,Dn,An) =
∑
j ̸=i

An,i,jRn,jD
∗
n,j

without censoring so that g̃ = g. In this case, we have

E[Tn,i|Rn] =
∑
j ̸=i

An,i,jRn,jpn,j ,

E[T̃n,i|Rn] =
∑
j ̸=i

Ãn,i,jRn,jpn,j =
∑
j ̸=i

An,i,jRn,jpn,j for Rn,i = 1.

Thus, Assumption 4 holds if the weighted degree
∑

j ̸=iAn,i,jRn,jpn,j is included in Zn,i and Z̃n,i.

Then, we have the following result:

Theorem 1. Under Assumptions 1 to 4, for large enough n,

θcausaln =

(
n∑

i=1

E[Xn,iX
′
n,i]

)−1 n∑
i=1

E[Xn,iX
′
n,i]θn,i,

and

θcausal,sample
n =

(
n∑

i=1

Rn,iE[X̃n,iX̃
′
n,i|Rn]

)−1 n∑
i=1

Rn,iE[X̃n,iX
′
n,i|Rn]θn,i a.s.

Theorem 1 shows that θcausaln is expressed as a weighted sum of causal effects θn,i induced by
the exposure mapping. On the other hand, θcausal,sample

n is not necessarily a weighted sum of
θn,i because of the difference in Xn,i and X̃n,i in the numerator. Moreover, the dimension of
θcausal,sample
n is d

T̃
, which can be different from dT , the dimension of θn,i.

In the absence of Assumption 4, it is known that the formula in Theorem 1 does not hold
due to the omitted variable bias (OVB). Assumption 4 and Theorem 1 suggest a takeaway for
practitioners: under the linear propensity scores, the researcher can select necessary controls
easily to avoid the OVB.
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The linear propensity score assumption Assumption 4 is a weak assumption in design-based
causal inference. This assumption also appears in Abadie et al. (2020) and Borusyak and Hull
(2023). In the latter, the OVB is removed by using the recentered instruments. Theoretically,
including the controls and using the recentered instruments are equivalent, but including the
controls is more frequently used in practice. While Borusyak and Hull (2023) focuses on homo-
geneous treatment effects, this paper allows for heterogeneous treatment effects.

Note that in general, the k-th elements of θcausaln and θcausal,sample
n do not directly correspond

to the causal effect of changes in the k-th element of the exposure mapping on the outcomes. For
example, if the exposure mapping is two-dimensional, we could have the first element of θcausaln

to be negative while the first element of θn,i is positive for all i ∈ Nn if the second element of it
is significantly negative.

3.2. Causal Interpretation. To provide a causal interpretation for each element θcausaln,(k) and

θcausal,sample
n,(k) , we develop an element-wise version of Theorem 1. To this end, we let Tn,i,(k) denote

the k-th element of Tn,i. Similarly, we write T̃n,i,(k), Xn,i,(k), X̃n,i,(k). For each k, let Un,i,(k) be
the residual when projecting Xn,i,(k) onto the Xn,i,(−k) = (Xn,i,(l))l ̸=k:

Un,i,(k) = Xn,i,(k) −

(
n∑

i=1

E[Xn,i,(k)X
′
n,i,(−k)]

)(
n∑

i=1

E[Xn,i,(−k)X
′
n,i,(−k)]

)−1

Xn,i,(−k).

Similarly, define

Ũn,i,(k) = X̃n,i,(k)−

(
n∑

i=1

Rn,iE[X̃n,i,(k)X̃
′
n,i,(−k)|Rn]

)(
n∑

i=1

Rn,iE[X̃n,i,(−k)X̃n,i,(−k)|Rn]

)−1

X̃n,i,(−k).

Then, we have the following result:

Theorem 2. Under Assumptions 1 to 4, for large enough n,

θcausaln,(k) =

∑n
i=1 E[Un,i,(k)Xn,i,(k)]θn,i,(k)∑n

i=1 E[U2
n,i,(k)]

+

∑n
i=1 E[Un,i,(k)X

′
n,i,(−k)]θn,i,(−k)∑n

i=1 E[U2
n,i,(k)]

for each k = 1, ..., dT , and

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[Ũn,i,(k)X

′
n,i|Rn]θn,i∑n

i=1Rn,iE[Ũ2
n,i,(k)|Rn]

a.s.

for each k = 1, ..., d
T̃
. Under an additional assumption d

T̃
= dT , we can simplify it into

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[Ũn,i,(k)Xn,i,(k)|Rn]θn,i,(k)∑n

i=1Rn,iE[Ũ2
n,i,(k)|Rn]

+

∑n
i=1Rn,iE[Ũn,i,(k)X

′
n,i,(−k)|Rn]θn,i,(−k)∑n

i=1Rn,iE[Ũ2
n,i,(k)|Rn]

a.s.

for each k = 1, ..., dT .

Theorem 2 shows that θcausaln,(k) and θcausal,sample
n,(k) are influenced by effects from other dimensions

θn,i,(l) with l ̸= k. However, the residualization does not eliminate contamination bias, because
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the definition of Un,i,(k) and Ũn,i,(k) only imply
∑n

i=1 E[Un,i,(k)X
′
n,i,(−k)] = 0 and

∑n
i=1Rn,iE[Ũn,i,(k)X

′
n,i,(−k)|Rn] =

0, respectively. Moreover, E[Un,i,(k)Xn,i,(k)] and E[Ũn,i,(k)Xn,i,(k)|Rn] are not guaranteed to be
non-negative.

Remark 5. Assuming d
T̃
= dT requires the researcher to correctly specify the dimension of the

exposure mapping (dT = d
T̃
). However, this assumption allows the researcher to misspecify the

shape of g̃ ̸= g or mismeasure the network. From this expression, we can see that θcausal,sample
n,(k)

is contaminated by effects from another dimension θn,i,(l) originating from the misspecification.
■

Remark 6. Our result for θcausal,sample
n illustrating the difficulties arising from misspecification

or mismeasurement is new. The result for θcausaln is a design-based version of Proposition 1
by Goldsmith-Pinkham et al. (2022). The differences are that they focus on a model-based
approach and mutually exclusive treatment indicators (e.g., K-arms).5 6 Our result for θcausaln is
more general because we allow more flexible treatments, including the network spillover. ■

Remark 7. If the distribution of Tn,i does not depend on i, a result in Theorem 2 can be
strengthened to

θcausaln,(k) =

∑n
i=1 E[Un,i,(k)Xn,i,(k)]θn,i,(k)∑n

i=1 E[U2
n,i,(k)]

for any k. That is, we do not have a contamination bias. However, the weight can be negative.
Moreover, the homogeneous requirement of the treatment variable Tn,i is usually violated in
design-based network experiments since the exposure mapping depends on the network informa-
tion for each i and the population network An is treated as non-random. ■

Remark 8. The weight for θcausaln is clearly non-negative if the dimension of the treatment
variable Tn,i is one (dT = 1) because no contamination occurs when dT = 1. This result is
consistent with Borusyak and Hull (2024), but our result in Theorem 2 is more general (dT > 1).
■

3.3. When Can We Avoid the Contamination Bias? The following statement provides
sufficient conditions to avoid contamination bias.

Corollary 1. Assume that Assumptions 1 to 4 and d
T̃
= dT hold. Suppose that Cov(Tn,i,(k), Tn,i,(l)|Rn) =

0 and Cov(T̃n,i,(k), Tn,i,(l)|Rn) = 0 for any l ̸= k. Then, for large enough n,

θcausaln,(k) =

∑n
i=1 E[X2

n,i,(k)]θn,i,(k)∑n
i=1 E[X2

n,i,(k)]

5Mutually exclusive treatments guarantee that treatment’s own effects have non-negative weights.
6Goldsmith-Pinkham et al. (2022) propose three solutions for eliminating contamination bias, but all of them
rely on constructing a model for the conditional expectation of heterogeneous treatment effects, which depends
on observed covariates. In a design-based setting with deterministic treatment effects θn,i, such modeling is not
suitable. Even if the modeling assumption is justified, the methods proposed by Goldsmith-Pinkham et al. (2022)
can be imprecise for network experiments due to weak overlap in propensity scores, which is violated for some
exposure mappings.
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for each k = 1, ..., dT , and

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]θn,i,(k)∑n

i=1Rn,iE[X̃2
n,i,(k)|Rn]

a.s.

for each k = 1, ..., dT .
The weights of θcausaln,(k) for θn,i,(k) are non-negative. If we further assume that Cov(T̃n,i,(k), Tn,i,(k)|Rn) ≥

0 a.s., then the weights of θcausal,sample
n,(k) for θn,i,(k) are non-negative, i.e.,

Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]∑n
i=1Rn,iE[X̃2

n,i,(k)|Rn]
≥ 0 a.s.

for all i ∈ Nn and each k = 1, ..., dT .

The zero conditional covariance assumption is satisfied if elements of Tn,i and T̃n,i are mutually
independent. The positive conditional covariance assumption is satisfied under the censored
network (see Example 6 below).

Remark 9. Under homogeneous treatment effects θn,i = θn, we have θcausaln = θn, but

θcausal,sample
n = θn −

(
n∑

i=1

Rn,iE[X̃n,iX̃
′
n,i|Rn]

)−1 n∑
i=1

Rn,iE[X̃n,i(Xn,i − X̃n,i)
′|Rn]θn.

Thus, θcausaln does not have contamination bias for homogeneous treatment effects, but θcausal,sample
n

does. Under homogeneous treatment effects andXn,i = X̃n,i, we have θcausaln = θcausal,sample
n = θn.

■

Example 6. Consider the exposure mapping in Example 3. The misspecified exposure mapping
is T̃n,i = g̃(i,Dn, Ãn) = 1

{∑
j ̸=iCn,i,jÃn,i,jRn,jD

∗
n,j > 0

}
. Assume that D∗

n,i ∼ Bernoulli(pn)

for i = 1, . . . , n independently. By adapting Corollary 1, θcausal,sample
n is a convex combination of

θn,i. Indeed, we can calculate

θcausal,sample
n =

∑n
i=1Rn,i

(
1− (1− pn)

∑
j ̸=i Cn,i,jÃn,i,jRn,j

)
θn,i,(1)∑n

i=1Rn,i

(
1− (1− pn)

∑
j ̸=i Cn,i,jÃn,i,jRn,j

) ,

and the weights are non-negative. In general, if both mappings T̃n,i,(k) and Tn,i,(k) are weakly
increasin (or both weakly decreasing) in {D∗

n,i}i∈Nn, then the weights are non-negative. Thus,
censoring does not cause negative weight problems when g is weakly monotone on {D∗

n,i}i∈Nn for
the first neighborhood exposure mapping.

3.4. More Examples.

Example 7. Let Tn,i = (Rn,iD
∗
n,i, q(

∑
j ̸=iAn,i,jRn,jD

∗
n,j ,
∑

j ̸=iAn,i,jRn,j)) and
T̃n,i = (Rn,iD

∗
n,i, q(

∑
j ̸=i Ãn,i,jRn,jD

∗
n,j ,
∑

j ̸=i Ãn,i,jRn,j)) for some function q : R2 → R. For
example, the share of treated friends is covered by q

q

∑
j ̸=i

An,i,jRn,jD
∗
n,j ,
∑
j ̸=i

An,i,jRn,j

 =

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,jRn,j
.
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It also covers the indicator function as in Example 2. Since D∗
n,i ⊥⊥ D∗

n,j, this satisfies the no-
correlation conditions. If q is non-decreasing with respect to the first argument, then T̃n,i and Tn,i
are positively correlated, giving θcausal,sample

n a clear causal interpretation. This type of exposure
mapping is used in Cai et al. (2015) and Carter et al. (2021). As we illustrated above in the
special case, the censoring T̃n,i = (Rn,iD

∗
n,i, q(

∑
j ̸=iCn,i,jÃn,i,jRn,jD

∗
n,j ,
∑

j ̸=iCn,i,jÃn,i,jRn,j))

does not cause negative weight problems since the exposure mapping g is weakly monotone on
{D∗

n,i}i∈Nn.

Example 8. Tn,i = (Rn,iD
∗
n,iGn,i, Rn,iD

∗
n,i(1−Gn,i), (1−Rn,iD

∗
n,i)Gn,i), where Gn,i = 1{

∑
j ̸=iAn,i,j

Rn,jD
∗
n,j > 0}. The elements are mutually exclusive but dependent, so the no-correlation condi-

tions are violated, and we have a contamination bias. This exposure mapping is used in Aronow
and Samii (2017). For the exposure mapping with dependence among its elements, we recommend
using the inverse propensity score weighting (IPW) estimators to avoid contamination bias.

Remark 10. (Comparison with IPW estimators) The causal estimand for the IPW estimators
is the average treatment effect (ATE), (1/n)

∑n
i=1 Y

∗
n,i(t) for each t. In other words, the IPW

estimator and the regression estimator are for different causal estimands. While the IPW esti-
mator works well for cases like Example 8, it is not suitable for cases like Example 9 because the
overlapping condition of the propensity score is easily violated. For example, suppose that Tn,i
is the treated friends share (

∑
j ̸=iAn,i,jRn,jD

∗
n,j)(

∑
j ̸=iAn,i,j), and there are two units having

three and two friends in the population network, respectively. The former can take Tn,i = 1/3

with positive probability, but the latter never takes the value. Thus, the overlapping condition
fails to hold. Moreover, the overlapping condition can be violated in the sampled network even
if it is satisfied in the population network, since the sampled network is a sub-network of the
population one.

The choice between the IPW estimator and the regression should be decided by the exposure
mapping formula that the researcher wants to use. We recommend using the IPW estimators
to avoid contamination bias when the overlapping condition is satisfied. On the other hand, if
there is a doubt on the overlapping condition or the exposure mapping takes (nearly) continuous
values, we suggest using the regression model since it does not require the overlapping condition.
■

Example 9. Consider

Tn,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
,

∑
j ̸=i

∑
k ̸=i,j An,i,jAn,j,kRn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j An,i,jAn,j,k

)
.

There are overlaps in Dn in the second and third elements if there are triangles in the network,
so no-correlation conditions are generally violated. Figure 2a shows an example of a network
with triangles. The second element of Tn,i is the average of the neighbors’ treatment status
including Dn,i1 and Dn,i2. The third element is the average of the first neighbors’ treatment
status, including Dn,i1 and Dn,i2, again. Thus, the second and third elements are correlated.
This setting is employed in Cai et al. (2015). An easy way to avoid contamination bias is to
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modify the exposure mapping g to eliminate the double counting. For example, we can use

Tn,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
,

∑
j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)

)
, (7)

instead. Although we miss some of the second-order links, we still manage to avoid the double
counting and hence contamination bias.

i i1

i2

(a) Without censored link

i i1

i2

(b) With censored (dashed) link

Figure 2. Networks with triangle link

Example 10. Consider the setup in Example 9 but with censoring caused by naming up to four
friends. As illustrated in Figure 2b, suppose that the sampled network link between i1 and i2 is
not observed due to the censoring. Then, i2 is misclassified as a second neighborhood friend in
the observed network while one is a first neighborhood friend in the population network. Thus, if
we consider the true exposure mapping Tn,i as in (7), and misspecified exposure mapping for the
sampled network

T̃n,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iCn,i,jÃn,i,jRn,jD

∗
n,j∑

j ̸=iCn,i,jÃn,i,j

,

∑
j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)

)
,

then, there is a correlation between Tn,i,(2) and T̃n,i,(3). An easy way to avoid contamination
bias is to modify the exposure mapping g̃ to make T̃n,i,(3) equal to zero for individuals subject to
censoring. For example, if the censoring happens by asking up to four friends, we can eliminate
the individuals with four observed links from consideration

T̃n,i,(3) =

∑
j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)

1

∑
j ̸=i

Cn,i,jÃn,i,j < 4

 .

Note that the censoring for i does not matter for the first neighborhood element T̃n,i,(2) by the same
logic as Example 7. Moreover, the censoring for i1 does not matter for the second neighborhood
element T̃n,i,(3) of i because it does not introduce any misclassification.

3.5. Asymptotic Theory. We mostly follow the notation of Kojevnikov, Marmer and Song
(2021). Let Nn = {1, ..., n} be the set of population units and dn(i, j) be the shortest distance
between i, j ∈ Nn on An (set dn(i, i) = 0; set dn(i, j) = ∞ if there are no paths between i and
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j). Define

Lv = {Lv,a : a ∈ N},

where

Lv,a = {f : Rv×a → R : ∥f∥∞ <∞,Lip(f) <∞},

where ∥ · ∥∞ is sup-norm and Lip(f) is the Lipschitz constant of f . Let

Pn(a, b; s) = {(A,B) : A,B ⊂ Nn, |A| = a, |B| = b, dn(A,B) ≥ s},

where

dn(A,B) = min
i∈A

min
j∈B

dn(i, j).

For each A ⊂ Nn and triangular array (Un,i), let us write

Un,A = (Un,i)i∈A.

Definition 1. A triangular array {Un,i}, n ≥ 1, Un,i ∈ Rv, is called conditionally ψ-dependent
given Rn, if for each n ∈ N, there exists a σ(Rn)-measurable sequence ξn = {ξn,s}s≥0, ξn,0 = 1,
and a collection of nonrandom functions (ψa,b)a,b∈N, ψa,b : Lv,a × Lv,b → [0,∞) such that for all
(A,B) ∈ Pn(a, b; s) with s > 0 and all f ∈ Lv,a and g ∈ Lv,b,

|Cov(f(Un,A), g(Un,B))| ≤ ψa,b(f, g)ξn,s a.s.

Define

Nn(i; s) = {j ∈ Nn : dn(i, j) ≤ s},

which is the set of i’s neighborhood within s-distance. First, we assume that the network
dependence is local.

Assumption 5. There exists some K ∈ N such that for any i ∈ Nn, n ∈ N and dn,d
′
n ∈ {0, 1}n

such that dNn(i,K) = d′
Nn(i,K),

g(i,dn,An) = g(i,d′
n,An),

g̃(i,dn, Ãn) = g̃(i,d′
n, Ãn) a.s.

Let d̃n(i, j) be the shortest distance between i, j ∈ Nn on Ãn. Assumptions 1 and 5 imply
that Tn,i ⊥⊥ Tn,j if dn(i, j) > 2K. They also imply that T̃n,i ⊥⊥ T̃n,j if dn(i, j) > 2K because
d̃n(i, j) ≥ dn(i, j) almost surely and bacause i and j do not share Rn,k and D∗

n,k for any k in
their K-neighborhoods.

Under the correctly specified exposure mapping, g = g̃, the condition g(i,dn,An) = g(i,d′
n,An)

a.s. automatically implies g̃(i,dn, Ãn) = g̃(i,d′
n, Ãn) a.s. by d̃n(i, j) ≥ dn(i, j).

Remark 11. For the same reason, a censored network always has a longer distance than the
original sampled network. ■
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Define N ∂
n (i; s) = {j ∈ Nn : dn(i, j) = s)}, which is the set of i’s neighborhood with exact

s-distance, and its p-th sample moment

δ∂n(s; p) =
1

n

∑
i∈Nn

|N ∂
n (i; s)|p.

Assumption 6. The sequence of networks (An) satisfies∑
1≤s≤2K

δ∂n(s; 1) = O(1).

By a simple calculation, we can show that Assumption 6 is equivalent to (nρn)
−1
∑n

i=1

∑
j∈Nn(i;2K) 1 =

O(1).

Remark 12. Assumption 6 is weaker than the bounded network degree since this assumption
only requires the boundedness on average. ■

Then, we show that our estimator is consistent for the sample-level causal estimand:

Theorem 3. Under Assumptions 1 to 6,

θ̂n − θcausal,sample
n

pR−→ 0 and θ̂n − θcausal,sample
n

p→ 0,

where pR−→ denotes convergence in probability conditional on Rn, that is, for any ε > 0,

P
(
∥θ̂n − θcausal,sample

n ∥ ≤ ε | Rn

)
a.s.−→ 1

as n→ ∞.

Theorem 3 establishes the internal validity of our network experiment. However, in general,
θ̂n − θcausaln ̸ p→ 0 because θcausaln − θcausal,sample

n ̸ p→ 0 due to misspecification of the exposure map-
ping. Moreover, as shown in Theorem 2, θcausal,sample

n does not have a clear causal interpretation.
Consequently, Theorem 3 does not guarantee the external validity of our network experiment.

Ideally, our network experiment would satisfy θ̂n − θcausaln
p→ 0 so that each element of θ̂n can

be interpreted as a causal spillover effect. We show that this consistency is achieved when there
is no misspecification and no mismeasurement (T̃n,i = Tn,i for each i ∈ Nn) and the observed
covariates coincide with those in the population (Z̃n,i = Zn,i for each i ∈ Nn). We are essentially
assuming that each T̃n,i is computed by g(i,Dn,An) = Tn,i where we replace g̃ with g and Ãn

with An. Under the linear propensity scores, we can show that Xn,i = X̃n,i a.s. (Lemma 7).

Assumption 7.

(i) We have the following equalities almost surely for Rn,i = 1: T̃n,i = Tn,i and Z̃n,i = Zn,i

for all i ∈ Nn and n ∈ N.
(ii) Rn,i enters only multiplicatively in the functional form of each element of Zn,i.
(iii) At most one element of Tn,i depends on i’s own treatment Rn,iD

∗
n,i and the element does

not depend on Rn,j and Dn,j for any j ̸= i.

Remark 13. Assumption 7 (i) is satisfied under no misspecification and no mismeasurement
for sampled units, i.e., g = g̃ and Ãn = An locally. We can always pick covariates Zn,i having
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Assumption 7 (ii) since Rn,i enters only multiplicatively for Tn,i by Assumption 1 and the def-
inition of the exposure mapping. Thus, we can choose covariates Zn,i satisfying Assumption 7
and Assumption 4 simultaneously. Assumption 7 (iii) is satisfied if we do not include the cross
term of the direct effect Rn,iD

∗
n,i and a spillover effect. Excluding the cross term is also need to

guarantee no contamination (Corollary 1).7 ■

Theorem 4. Under Assumptions 1 to 7,

θ̂n − θcausaln
p→ 0.

It is worth noting that Theorem 4 does not hold if Z̃n,i ̸= Zn,i, since we cannot ensure
X̃n,i ∼ Xn,i asymptotically. Instead, under no misspecication, Theorem 2 implies

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[Ũ2

n,i,(k)|Rn]θn,i∑n
i=1Rn,iE[Ũ2

n,i,(k)|Rn]

for each k = 1, ..., d
T̃
. Thus, although the consistency for θcausaln may fail in this setting, the

absence of misspecification alone recovers the causal interpretability of θcausal,sample
n , and by

extension, that of θ̂n.
Next, we consider the asymptotic distribution of θ̂n. Now, we introduce additional dependence

measures of the network. Define

∆n(s,m; k) =
1

n

∑
i∈Nn

max
j∈N ∂

n (i;s)
|Nn(i;m) \ Nn(j; s− 1)|k

and

cn(s,m; k) = inf
α>1

[∆n(s,m; kα)]1/α
[
δ∂n

(
s;

α

α− 1

)]1−1/α

.

cn(s,m; k) measures the density of the network and is used as a sufficient condition for the CLT.
Define

ε̃n,i = Yn,i − X̃ ′
n,iθ

causal,sample
n − Z̃ ′

n,iγ
causal,sample
n ,

εn,i = Yn,i −X ′
n,iθ

causal
n − Z ′

n,iγ
causal
n ,

and

Σ̃n =Var

(
n∑

i=1

Rn,iX̃n,iε̃n,i | Rn

)

Σn =Var

(
n∑

i=1

Rn,iXn,iεn,i

)
.

We will make the following assumption about the dependence structure of the network.

7We can allow the violation of Assumption 7 (iii) if we modify θ̂n in the same manner as γ̃n in Appendix A.
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Assumption 8. There exists a positive sequence mn → ∞ such that for p = 1, 2,

nΣ̃−(1+p/2)
n

2K∑
s=0

cn(s,mn; p)
a.s.−→ 0,

nΣ−(1+p/2)
n

2K∑
s=0

cn(s,mn; p) → 0.

Then, we show that θ̂n is asymptotically normal relative to θcausal,sample
n :

Theorem 5. Under Assumptions 1 to 6 and 8,

Σ̃−1/2
n Q̃XX

n (θ̂n − θcausal,sample
n )

dR−→ N(0, Id
T̃
) and Σ̃−1/2

n Q̃XX
n (θ̂n − θcausal,sample

n )
d→ N(0, Id

T̃
),

where dR→ denotes convergence in distribution conditional on Rn, that is,∣∣∣P(Σ̃−1/2
n Q̃XX

n (θ̂n − θcausal,sample
n ) ≤ t | Rn

)
− F (t)

∣∣∣ a.s.−→ 0

as n→ ∞ for any t ∈ Rd
T̃ letting F (t) be the distribution function of N(0, Id

T̃
).

We also show that the absence of misspecification and access to the covariates in the population
yield asymptotic normality of θ̂n relative to θcausaln :

Theorem 6. Under Assumptions 1 to 8, we have

Σ−1/2
n Q̃XX

n (θ̂n − θcausaln )
d→ N(0, IdT ).

Remark 14. When we have a homogeneous effect θn,i = θn, we have

θcausal,sample
n = θcausaln a.s.

for large enough n under Xn,i = X̃n,i. Hence, we can use the same asymptotic distribution
among them. ■

4. Variance Estimation

In this section, we provide a conservative network heteroskedasticity and autocorrelation con-
sistent (HAC) variance estimator for θ̂n. Note that even when treatments and samples are
randomly assigned and drawn, dependence can persist within a 2K-neighborhood because ex-
posure mappings Tn,i may share elements of Dn and Rn. As a result, the variance estimator
must account for this local dependence structure. However, for any pair i, j with dn(i, j) > 2K,
the exposure mappings Tn,i and Tn,j are independent. When the exposure mapping is correctly
specified (g̃ = g), the researcher can directly choose a finite K based on the functional form.
If there is potential misspecification in g̃, K should be selected conservatively, reflecting the
maximum range over which the exposure mapping may induce dependence.

Define

Ñn(i; s) = {j ∈ Nn : d̃n(i, j) ≤ s},

which is the set of i’s neighborhood within s-distance on a sampled network Ãn. Note that
Ñn(i; s) is a random set because d̃n(i, j) is a random variable depends on Rn. On the other
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hand, dn(i, j) and Nn(i; s) are non-random. Recall that we also have d̃n(i, j) ≥ dn(i, j) a.s.,
thus, Ñn(i; s) ⊆ Nn(i; s) a.s.

Let

ε̂n,i = Yn,i − X̃ ′
n,iθ̂n − Z̃ ′

n,iγ̃n,

Ψn,i = Xn,iεn,i, Ψ̃n,i = X̃n,iε̃n,i, and Ψ̂n,i = X̃n,iε̂n,i, where we define γ̃n later in Theo-
rems 7 and 8. By orthogonality conditions,

∑n
i=1 E [Ψn,i] = 0,

∑n
i=1Rn,iE

[
Ψ̃n,i | Rn

]
= 0,

and
∑n

i=1Rn,iΨ̂n,i = 0.
Then, the variances of interest can be written as

1

nρn
Σ̃n =Var

(
1

√
nρn

n∑
i=1

Rn,iX̃n,iε̃n,i | Rn

)

=
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jE
[(

Ψ̃n,i − E
[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
| Rn

]
,

and

1

nρn
Σn =Var

(
1

√
nρn

n∑
i=1

Rn,iXn,iεn,i

)

=
1

nρn

n∑
i=1

∑
j∈Nn(i,2K)

E
[
(Rn,iΨn,i − ρnE [Ψn,i]) (Rn,jΨn,j − ρnE [Ψn,j ])

′
1{d̃n(i, j) ≤ 2K}

]
.

Remark 15. By Assumption 7 (i), Tn,i depends on D∗
n,j essentially if j ∈ Ñn(i, 2K) conditional

on Rn. However, Tn,i can depend on j ∈ Nn(i, 2K) unconditionally. Thus, (nρn)
−1Σn has

dependence terms over j ∈ Nn(i, 2K) instead of j ∈ Ñn(i, 2K). ■

We consider the following feasible estimator:

1

N
Σ̂n =

1

N

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jΨ̂n,iΨ̂
′
n,j .

To show the consistency of the variance estimator, we need to make an additional sparsity
assumption. The assumption requires a few more notations. Let δn(s; p) be the p-th sample
moment of the set of i’s neighborhood within s-distance:

δn(s; p) =
1

n

∑
i∈Nn

|Nn(i; s)|p.

We also define Jn(s,m) as the set of quadruples (i, j, i′, j′) such that i and j are 2K-neighbors,
i′ and j′ are m-neighbors of i and j, respectively, and the distance between i and j is exactly s:

Jn(s,m) =
{
(i, j, i′, j′) ∈ N 4

n : k ∈ Nn(i,m), j′ ∈ Nn(j,m), dn(i, j) = s
}
.

We also denote its cardinality by #|Jn(s,m)|.

Assumption 9.

(i) δn(2K; 2) = o(n).
(ii)

∑2K
s=0#|Jn(s, 2K)| = o(n2).
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Assumption 9 is a version of Assumptions 7c and 7d of Leung (2022). This assumption is
satisfied if network links are not too dense.

Theorem 7. Let γ̃n = γ̂n. Under Assumptions 1 to 6, 8 and 9, we have

1

N
Σ̂n =

1

nρn
Σ̃n + B̃n + opR(1),

where Un = opR(1) means Un
pR−→ 0, and

B̃n =
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′
.

Let γ̃n = γcausaln + op(1). If, in addition, assume Assumption 7. Then,

1

N
Σ̂n =

1

nρn
Σn + B̂n + op(1),

where

B̂n =
1

n

n∑
i=1

∑
j∈Nn(i,2K)

ρnE [Ψn,i]E [Ψn,j ]
′ P
(
d̃n(i, j) ≤ 2K

)
.

Remark 16. An estimator satisfying γ̃n = γcausaln + op(1) is given in Appendix A. In general,
γ̂n ̸= γcausaln + op(1), and we need a modification on γ̂n. ■

Thus, we can only estimate the variance up to the ones with bias terms B̃n and B̂n since there
is no hope to estimate each heterogeneous expectation consistently. This bias is inevitable in
heterogeneous treatment effect settings (Abadie et al., 2020; Leung, 2020; Gao and Ding, 2023).
Combining this convergence and the asymptotic normality, we can estimate the variance of θ̂n
by (

Q̃XX
n

)−1
(

1

N
Σ̂n

)(
Q̃XX

n

)−1
. (8)

The above variance estimator has a problem because we cannot guarantee conservativeness.
Indeed, bias matrices B̂n and B̃n are not necessarily positive semi-definite.8 Conservative guar-
antee modification is possible. We can write (1/N)Σ̂n = (1/N)R̂Ψ

′
nK̃nR̂Ψn, where

R̂Ψn =
(
Rn,1X̃n,1ε̂n,1, · · · , Rn,nX̃n,nε̂n,n

)′
,

K̃n = [1{d̃n(i, j) ≤ 2K}]i,j .

Eigendecomposition gives K̃n = QnΞnQ′
n. By replacing K̃n by K̃+

n = Qnmax{0,Ξn}Q′
n (max

is taken element-wise), the variance matrix estimator

1

N
Σ̂+
n =

1

N
R̂Ψ

′
nK̃

+
n R̂Ψn =

1

N

n∑
i=1

n∑
j=1

Rn,iRn,jΨ̂n,iΨ̂
′
n,jK̃

+
n,i,j .

8Alternatively, we can implement the randomized inference as Borusyak and Hull (2023). For multidimensional
θ̂n, the randomized inference do not guarantee conservativeness, too.
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becomes positive semi-definite. We also have K̃−
n = Qn|min{0,Ξn}|Q′

n = K̃+
n − K̃n. This

modification is provided by Gao and Ding (2023). The modified variance estimator is given by(
Q̃XX

n

)−1
(

1

N
Σ̂+
n

)(
Q̃XX

n

)−1
. (9)

Define Kn = [1{dn(i, j) ≤ 2K}]i,j , and define K+
n and K−

n in a similar manner to K̃+
n and

K̃−
n . Define

δ−n (2K; p) =
1

n

n∑
i=1

 n∑
j=1

|K̃−
n,i,j |

p

,

and

#|J −
n (s, 2K)| =

n∑
i=1

n∑
j=1

1{dn(i, j) = s}

(
n∑

i′=1

|K̃−
n,i,i′ |

) n∑
j′=1

|K̃−
n,j,j′ |

 .

Assumption 10. We assume that

(i) δ−n (2K; 1) = Oa.s.(1).
(ii) δ−n (2K; 2) = Oa.s.(n).
(iii)

∑2K
s=0#|J −

n (s, 2K)| = Oa.s.(n
2).

Assumption 10 is a version of Assumptions 7b-7d of Gao and Ding (2023). The assumption is
a modified version of Assumption 9 for the eigenvalue modification.

Theorem 8. Let γ̃n = γ̂n. Under Assumptions 1 to 6, 8 and 10, we have

1

N
Σ̂+
n =

1

nρn
Σ̃n + B̃+

n + oRp (1),

where

B̃+
n =

1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′
K̃+

n,i,j

+
1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[(

Ψ̃n,i − E
[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
| Rn

]
K̃−

n,i,j

Let γ̃n = γcausaln + op(1). If, in addition, assume Assumption 7. Then,

1

N
Σ̂+
n =

1

nρn
Σn + B̂+

n + op(1),

where

B̂+
n =

1

n

n∑
i=1

n∑
j=1

ρnE [Ψn,i]E [Ψn,j ]
′ E
[
K̃+

n,i,j

]

+
1

nρn

n∑
i=1

n∑
j=1

E
[
(Rn,iΨn,i − ρnE [Ψn,i]) (Rn,jΨn,j − ρnE [Ψn,j ])

′ K̃−
n,i,j

]
.

5. Simulation

In this section, we conduct two simulation exercises to illustrate the performance of our pro-
posed inferential procedure as well as to underscore the potential severity of contamination bias.
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In the first exercise, we focus on a case where Tn,i = T̃n,i holds to test whether the asymptotic
approximation above works in finite samples. In the second exercise, we switch to a case where
Tn,i ̸= T̃n,i and contamination bias arises.

In the following exercises, to discipline the structure of the population network, we utilize
network data from Banerjee, Chandrasekhar, Duflo and Jackson (2013). They conducted a
network survey among randomly selected respondents across 75 villages in rural southern India.
Respondents were asked to name 5 to 8 contacts across 12 interaction dimensions (e.g., house
visits, borrowing goods). We use a network of borrowing relationships, specifically whether a
person borrows rice or kerosene from others. To illustrate the applicability of our framework to
a single large network without relying on numerous clusters, we focus on the largest village and
use the network as the population An. Basic network statistics for this village are presented in
Table 2:

Table 2. Network Information

Nodes Edges Mean Degree Mean 2nd Order Degree
1770 5556 6.28 11.44

Notes: Mean Degree reports mean degree; Mean 2nd Order Degree reports reports the
mean count of friends-of-friends not directly connected to node i.

5.1. Tn,i = T̃n,i case. In this subsection, we consider the following exposure mapping:

Tn,i =

Rn,iD
∗
n,i,
∑
j ̸=i

An,i,jRn,jD
∗
n,j


=: (Dn,i, netn,i).

We set T̃n,i = Tn,i. Note that, since Dn,i ⊥⊥ netn,i, no contamination bias would arise. Our
focus here is to evaluate our inference procedure based on the asymptotic approximation in this
correctly specified model.

We implement the following simulation design. First, we set individual-specific parameters as
follows:

θn,i,(1) ∼ Exponential(1/3) i.i.d.,

θn,i,(2) =

∑
j ̸=iAn,i,j

maxk
∑

j ̸=k An,k,j
,

νn,i ∼ N(0, 2) i.i.d.

Specifically, we draw these θn,i and νn,i once and treat them as fixed for each Monte Carlo
iteration to simulate the design-based and sampling-based uncertainties. Note that each θn,i,(2)

is the normalized degree of node i. This model captures the case where the spillover effect is
larger for nodes with more connections, reflecting potential feedback loops of information among
neighbors. The average direct and spillover effects are about 1/3 and 2/9, respectively. Given
the fixed population adjacency matrix An from Banerjee et al. (2013), we can calculate the
population-based causal estimand θcausaln .
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Next, for each iteration, we draw

D∗
n,i ∼ Bernoulli(0.5) i.i.d.

Rn,i ∼ Bernoulli(ρn) i.i.d.

for varying sampling probabilities ρn ∈ {0.1, 0.2, . . . , 1.0} to see the impact of sampling uncer-
tainty on inference. For each realization of Rn, we compute θcausal,sample

n . Subsequently, using
each realization of Rn and Dn, we estimate θ̂n from the regression:

Yn,i ∼ X̃n,i + Z̃n,i

where Z̃n,i = (Rn,ipn,
∑

j ̸=iAn,i,jRn,jpn), restricted to units with Rn,i = 1. Finally, we compute
the standard errors based on (9) with γ̃n = γ̂n for θcausal,sample and with γ̃n in Appendix A
for θcausal, as well as the conventional Eicker-Huber-White (EHW) standard errors, which are
computed from the following variance estimator:(

Q̃XX
n

)−1
(

1

N

n∑
i=1

Rn,iX̃n,iX̃
′
n,iε̂

2
n,i

)(
Q̃XX

n

)−1
.

When computing the standard errors based on (9), we use the observed network Ãn = [Rn,i ×
Rn,j × An,i,j ]i,j , which is the sampled network with in-sample links. We repeat this iteration
2,000 times.

In Table 3, Panels A and B, we report the results of this simulation when we vary ρn from 0.1 to
0.5 and from 0.6 to 1.0, respectively. Since the population size (the number of nodes) is 1770, the
sample size varies from about 177 to 1770. In each panel, the first three rows report the averages
of the population and sample-level causal estimands and the OLS estimator. The fourth to sixth
rows report the averages of the EHW standard errors and the averages of our proposed standard
errors in Equation (9). The seventh and eighth rows report the average absolute deviations of
the estimator from the causal estimands. The last four rows report the coverage probabilities of
the 95% confidence intervals constructed using the EHW standard errors and those based on (9)
for the two causal estimands.

The first three rows and the seventh and eighth rows in Table 3 show that the estimator closely
approximates both estimands, as expected from our asymptotic theory (Theorems 3 and 4). The
difference between θcausaln and θcausal,sample

n is negligible because Tn,i = T̃n,i. We also observe that
while the direct effect estimands θcausal(1) and θcausal,sample

(1) are close to the average direct effect of

1/3, the spillover effect estimands θcausal(2) and θcausal,sample
(2) are larger than the average spillover

effect of 2/9. This occurs because the spillover effect estimands place greater weight on nodes
with more connections, who tend to have larger spillover effects, resulting in an upward bias.

The fourth to sixth rows show that our proposed standard errors based on (9) tend to be
larger than the EHW standard errors, especially as ρn increases. This is because (i) the EHW
standard errors do not account for the network dependence structure, and the observed network
becomes denser as ρn increases, and (ii) our standard errors are designed to be conservative, as
established in Theorem 8. When ρn is small, the difference between the two types of standard
errors is less pronounced because (i) the observed network is sparser and the dependence structure
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is less important, and (ii) the sample-to-population ratio approaches the infinite population case,
where the standard model-based inference is valid. Additionally, we observe that our proposed
standard errors based on (9) for θcausaln tend to be slightly larger than those for θcausal,sample

n ,
reflecting the additional adjustment for sampling variation in the former.

The last two rows in Table 3 show that the coverage rates based on our proposed method
(9) are reasonably close to the nominal 95% target. We observe under-coverage for θcausaln,(2) and

θcausal,sample
n,(2) when ρn is small, likely due to the small sample size and limited variation in the

net variable in sparse networks. In contrast, the coverage rates for θcausaln,(2) and θcausal,sample
n,(2) based

on the EHW standard errors are substantially below the nominal level as ρn increases. This is
because the EHW standard errors ignore the network dependence structure and finite population
bias, which likely leads to over-rejection of the null hypothesis.

Overall, our simulation exercise shows that as long as the model is correctly specified and
relevant network information is observed, reliable inference for the causal estimands is possible
even when not everyone in the population is sampled. Since exhaustive network collection can be
costly in practice, our results provide a rationale for collecting network data based on sampled
units, which is less costly.
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Table 3. Simulation Results: Tn,i = T̃n,i case

Panel A: ρ = 0.1− 0.5
0.1 0.2 0.3 0.4 0.5

D net D net D net D net D net
θcausal 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312
θcausal,sample 0.346 0.311 0.349 0.311 0.349 0.312 0.349 0.311 0.349 0.312
θ̂ 0.347 0.285 0.350 0.305 0.348 0.308 0.352 0.310 0.350 0.305
SE EHW 0.214 0.265 0.216 0.268 0.153 0.136 0.153 0.136 0.126 0.093
SE (9) θcausal 0.214 0.263 0.215 0.265 0.156 0.146 0.156 0.145 0.132 0.109
SE (9) θcausal,sample 0.214 0.263 0.215 0.265 0.156 0.147 0.156 0.146 0.132 0.110
|θ̂ − θcausal| 0.172 0.233 0.174 0.223 0.119 0.122 0.128 0.118 0.097 0.093
|θ̂ − θcausal,sample| 0.172 0.232 0.171 0.220 0.118 0.120 0.126 0.117 0.096 0.092
Coverage EHW θcausal 0.945 0.920 0.958 0.937 0.953 0.907 0.942 0.919 0.953 0.879
Coverage EHW θcausal,sample 0.948 0.914 0.955 0.933 0.951 0.908 0.945 0.920 0.954 0.886
Coverage (9) θcausal 0.941 0.904 0.953 0.926 0.953 0.924 0.944 0.937 0.963 0.931
Coverage (9) θcausal,sample 0.946 0.907 0.952 0.924 0.955 0.925 0.949 0.939 0.963 0.928

Panel B: ρ = 0.6− 1.0
0.6 0.7 0.8 0.9 1.0

D net D net D net D net D net
θcausal 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312
θcausal,sample 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312
θ̂ 0.352 0.311 0.348 0.305 0.350 0.306 0.348 0.305 0.350 0.307
SE EHW 0.126 0.092 0.110 0.071 0.110 0.071 0.099 0.058 0.100 0.058
SE (9) θcausal 0.132 0.109 0.119 0.091 0.119 0.091 0.110 0.082 0.110 0.083
SE (9) θcausal,sample 0.132 0.110 0.119 0.093 0.119 0.093 0.110 0.084 0.110 0.085
|θ̂ − θcausal| 0.105 0.089 0.086 0.076 0.092 0.076 0.078 0.067 0.084 0.067
|θ̂ − θcausal,sample| 0.104 0.088 0.086 0.076 0.091 0.075 0.078 0.067 0.084 0.066
Coverage EHW θcausal 0.942 0.899 0.955 0.845 0.943 0.859 0.952 0.832 0.936 0.816
Coverage EHW θcausal,sample 0.948 0.904 0.954 0.850 0.940 0.862 0.954 0.831 0.940 0.822
Coverage (9) θcausal 0.946 0.940 0.969 0.933 0.953 0.935 0.969 0.951 0.962 0.956
Coverage (9) θcausal,sample 0.953 0.949 0.970 0.936 0.959 0.940 0.970 0.950 0.966 0.959

Note: Panel A reports the results for ρn = 0.1, . . . , 0.5 and Panel B reports the results for ρn = 0.6, . . . , 1.0. The first
three rows report the averages of the population and sample-level causal estimands and the OLS estimator. The fourth
and fifth rows report the averages of the EHW standard errors and our proposed standard errors based on (9). The
sixth and seventh rows report the average absolute deviations of the estimator from the two causal estimands. The
last four rows report the coverage probabilities of the 95% confidence intervals constructed using the EHW standard
errors and the standard errors based on our proposed method (9) for the two causal estimands.

5.2. Tn,i ̸= T̃n,i case. In this subsection, we consider a scenario in which the true and observed
exposure mappings diverge. The main objective here is to quantify the severity of contamination
bias. To this end, we focus on a case where there is no contamination bias at the population
level, but bias can be caused by the choice of g̃. Specifically, we specify the exposure mapping
as in Example 9:

Tn,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
,

∑
j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)

)
=: (Dn,i, netn,i,weakn,i),

and T̃n,i is the same as Tn,i except that its second and third elements are replaced by

ñetn,i =

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iRn,jAn,i,j
; w̃eakn,i =

∑
j ̸=i

∑
k ̸=i,j Rn,jAn,i,jAn,j,k(1−An,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j Rn,jAn,i,jRn,kAn,j,k(1−An,i,k)

.
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For comparison, we also consider T̃ overlap
n,i , which is the same as T̃n,i except that each 1 − An,i,k

in w̃eakn,i is replaced by 1. As discussed in Example 9, due to overlaps in the second and third
elements, the sample-level causal estimand based on T̃ overlap

n,i will be contaminated. In contrast,
the estimands based on Tn,i and T̃n,i are not, as they are free of such overlaps and correlation.

The simulation procedure is similar to the previous exercise. The main difference is the
following: as before, θn,i,(1) is drawn from Exponential(1/3) and fixed, but for k = 2, 3, we set

θn,i,(2) =Mn,i, θn,i,(3) = 0,

where Mn,i is a certain clustering coefficient given by

Mn,i =
100

n

∑
k ̸=i

∑
j ̸=i,k

An,i,jAj,k

2

.

We choose this coefficient to mechanically maximize the contamination bias, as Mn,i correlates
with the contamination weights appearing in Theorem 2. We find that the average spillover
effect from netn,i, i.e., the average of Mn,i, is about 1/2. We also set θn,i,(3) = 0 for all i; thus,
any deviations from 0 can be interpreted as contamination bias.

Simulation results for ρn ∈ {0.1, 0.5, 1.0} are summarized in Table 4. In Panel A, we use T̃n,i
whose w̃eakn,i does not have an overlap in D∗

n,j for any j with ñetn,i. In Panel B, we use T̃ overlap
n,i

whose w̃eak
overlap
n,i does share some D∗

n,j with ñetn,i. Also note that, in both panels, the true
exposure mapping is fixed to Tn,i defined above. Hence, the population-level causal estimands
θcausaln are the same regardless of which T̃n,i or T̃ overlap

n,i is used.
From Panel A of Table 4 (no overlap case), we can observe that the sample-level estimand and

estimator largely deviate from the population-level estimand for netn,i. This deviation is driven
not by contamination, but by the difference between netn,i and ñetn,i:

netn,i =

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
̸=
∑

j ̸=iAn,i,jRn,jD
∗
n,j∑

j ̸=iRn,jAn,i,j
= ñetn,i.

When ρn is small, the denominator of w̃eakn,i tends to be smaller than that of netn,i, which
results in a downward bias.

Because of the bias, the coverage probabilities against θcausaln are close to 0 with both EHW
standard errors and those based on (9), especially when ρn is small. However, as ρn increases, the
bias and coverage probabilities tend to improve with our proposed standard errors (9) because
the difference between Tn,i and T̃n,i becomes smaller and the standard errors are designed to be
conservative. In contrast, the EHW standard errors fail to capture the dependence structure and
thus severely under-cover the causal estimands as ρn increases.

From Panel B of Table 4 (with overlap case), we can observe a similar pattern as in Panel
A when ρn is small. However, a crucial difference arises when ρn = 1.0. We can observe that
θcausal,sample
n,(3) and θ̂n,(3) are largely biased downward compared with θcausaln,(3) , with a magnitude

similar to that of θcausaln,(2) . Since the true θn,i,(3) = 0 for all i, this bias is mainly driven by
contamination, as suggested by Theorem 2. The contamination bias is also reflected in the
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average absolute deviation of the estimator and the coverage probabilities against θcausaln,(3) for
both EHW standard errors and those based on (9), resulting in under-coverage.

In summary, the simulation results in Table 4 show that the deviation of T̃n,i from Tn,i can
lead to severe bias and under coverage for the population causal estimands, especially when the
deviation is sizable. The results also highlight the potential severity of contamination bias when
there is a small overlap in elements of T̃n,i, whose size can be comparable to the true spillover
effects. This emphasizes the importance of careful choice of g̃ in practice and calls for caution
when interpreting the results based on the linear regression framework. In the next section, we
discuss whether the contamination bias is present in the real data application.

Table 4. Simulation Results: Tn,i ̸= T̃n,i case

Panel A: No Overlaps
ρ = 0.1 ρ = 0.5 ρ = 1.0

D net weak D net weak D net weak
θcausal 0.348 0.567 0.0 0.348 0.567 0.0 0.348 0.567 0.0
θcausal,sample 0.347 0.153 0.0 0.348 0.282 0.0 0.348 0.567 0.0
θ̂ 0.347 0.139 0.009 0.346 0.28 -0.004 0.347 0.565 -0.01
SE EHW 0.163 0.251 0.475 0.087 0.113 0.128 0.068 0.11 0.111
SE (9) θcausal 0.165 0.263 0.549 0.102 0.135 0.175 0.108 0.191 0.233
SE (9) θcausal,sample 0.163 0.248 0.398 0.1 0.133 0.153 0.104 0.198 0.173
|θ̂ − θcausal| 0.182 0.47 0.696 0.08 0.292 0.159 0.058 0.141 0.153
|θ̂ − θcausal,sample| 0.18 0.289 0.696 0.08 0.124 0.159 0.058 0.141 0.153
Coverage EHW θcausal 0.844 0.56 0.703 0.908 0.335 0.797 0.938 0.775 0.74
Coverage EHW θcausal,sample 0.846 0.819 0.703 0.909 0.836 0.797 0.938 0.775 0.74
Coverage (9) θcausal 0.847 0.577 0.768 0.942 0.443 0.922 0.997 0.968 0.964
Coverage (9) θcausal,sample 0.844 0.813 0.618 0.939 0.898 0.87 0.995 0.971 0.915

Panel B: With Overlaps
ρ = 0.1 ρ = 0.5 ρ = 1.0

D net weak D net weak D net weak
θcausal 0.348 0.567 0.0 0.348 0.567 0.0 0.348 0.567 0.0
θcausal,sample 0.347 0.149 0.032 0.348 0.279 0.008 0.348 0.773 -0.356
θ̂ 0.347 0.135 0.037 0.346 0.28 -0.0 0.347 0.783 -0.374
SE EHW 0.163 0.269 0.447 0.087 0.155 0.176 0.068 0.249 0.264
SE (9) θcausal 0.165 0.279 0.492 0.102 0.186 0.22 0.105 0.419 0.452
SE (9) θcausal,sample 0.163 0.265 0.416 0.1 0.18 0.204 0.104 0.394 0.395
|θ̂ − θcausal| 0.181 0.476 0.59 0.08 0.297 0.204 0.058 0.279 0.439
|θ̂ − θcausal,sample| 0.179 0.295 0.589 0.08 0.147 0.204 0.058 0.211 0.295
Coverage EHW θcausal 0.845 0.584 0.756 0.908 0.528 0.828 0.936 0.854 0.65
Coverage EHW θcausal,sample 0.84 0.845 0.752 0.91 0.896 0.828 0.936 0.928 0.834
Coverage (9) θcausal 0.848 0.597 0.8 0.938 0.653 0.918 0.996 0.987 0.902
Coverage (9) θcausal,sample 0.84 0.837 0.714 0.936 0.933 0.886 0.995 0.995 0.96

Note: Panel A reports the results when T̃n,i is used while Panel B reports the results when T̃ overlap
n,i is used. We

report the same statistics in each row as in Table 3.

6. Empirical Illustration

In an influential study, Cai et al. (2015) conducted a large-scale network experiment in which
they randomly assigned information sessions on weather insurance products to rice farmers in
rural villages in China. Out of 185 randomly selected villages, all rice farmers were invited
to participate, and approximately 90% agreed to attend. The researchers administered both a
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household survey (to gather farmer characteristics) and a network survey (to collect friendship
links). In the network survey, household heads were asked to list their five closest friends with
whom they discussed rice production and financial matters, which provides an out-of-sample
network. They were allowed to list friends outside of their village.9

The information sessions were conducted in two rounds (first and second) and with varying
intensity (simple or intensive). Farmers were randomly assigned to one of four possible sessions.
The main outcome here, Yn,i, is a test score measuring understanding of the insurance product,
taking 10 values between 0 and 1 (test). The treatment variable, Dn,i, indicates whether a farmer
was assigned to an intensive session (intensive). To measure the spillover/diffusion effects of the
information sessions on farmers’ knowledge, the researchers focused on a subsample of farmers
who were not invited in the first round and defined (i) the fraction of a farmer’s friends who
attended an intensive session in the first round (net) and (ii) the fraction of those friends’ friends
who attended an intensive session in the first round (weak). The exposure mapping T̃n,i is a
tuple of these treatment and network variables.

As discussed in Example 9 and the simulation section, including first-order overlaps can sig-
nificantly affect inference through induced contamination bias. We found that Cai et al. (2015)
included such overlaps in weak.10 Our aim here is to compare the results when we include or
exclude these overlaps in net and weak while running the following regression:

test ∼ intensive + net + weak + controls.

For estimation, unlike in the simulation exercise above, we use all the available villages in the
sample, so the estimates are comparable to those in Cai et al. (2015). We control for house-
hold characteristics, village fixed effects, and network information (degree dummy) to satisfy
Assumption 4. Standard errors are calculated via our proposed method (9), with K = 2.

Table 5. Regression Results for Cai et al. (2015)’s data

With Overlaps No Overlaps
intensive 0.0752 0.0734

(0.0159) (0.0164)
net 0.3110 0.2879

(0.0527) (0.0500)
weak -0.1511 -0.0741

(0.0453) (0.0383)
Notes: The number of villages is 47, and the total sample size is 1247. The first and second
columns report estimates with and without overlaps in first-order links between net and weak.
All regressions include household characteristics, village fixed effects, and network information
as controls. Standard errors, computed using our proposed method (9) with γ̃n = γ̂n, are
reported in parentheses.

9Cai et al. (2015) conducted a pilot network survey in two villages without limiting the number of friends, but
found that most farmers listed five or fewer friends. We take this analysis at face value and assume that there is
no concern about censoring the number of friends.
10See the data/do/rawnet.do file found in their replication folder: https://www.openicpsr.org/openicpsr/
project/113593/version/V1/view;jsessionid=743ABAC8AEBB3E612D4250D02BE40429

https://www.openicpsr.org/openicpsr/project/113593/version/V1/view;jsessionid=743ABAC8AEBB3E612D4250D02BE40429
https://www.openicpsr.org/openicpsr/project/113593/version/V1/view;jsessionid=743ABAC8AEBB3E612D4250D02BE40429
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Table 5 reports the OLS estimator θ̂n and its standard errors, both with and without overlaps
in the exposure mappings. When overlaps are included, we observe an upward bias for net and a
pronounced downward bias for weak. In fact, the estimate for weak nearly doubles compared to
the no-overlap specification and becomes comparable in magnitude to that of net. This suggests
a risk of overestimating the negative effects of weak connections, even if the true effects are
relatively small.

This pattern is consistent with our simulation results under similarly high sampling rates,
where regression estimates diverge markedly depending on whether overlaps are allowed in the
exposure mapping. Given the 90% sampling rate in this experiment, the no-overlap specification
likely more closely reflects the true model, and its estimates more accurately represent the average
causal spillover effects of the intervention on product understanding, which are insignificant
for weak. Overall, these findings underscore the critical importance of carefully choosing the
exposure mapping when estimating causal spillover effects.

7. Conclusion

In this paper, we study a linear regression framework for estimating causal spillover effects
in network experiments. We show that the standard linear regression approach can consis-
tently estimate causal spillover effects, provided that the exposure mapping is carefully specified.
Specifically, we find that the exposure mapping must avoid overlaps in treatment status among
its elements to prevent contamination bias. We also develop a novel asymptotic theory for infer-
ence on causal spillover effects, allowing for explicit sampling of units and networks, as well as
network dependence.

Based on our theoretical analysis and simulation/empirical exercises, we recommend that
researchers carefully specify the exposure mapping when estimating causal spillover effects in
network experiments using linear regression. If the exposure mapping is not free of overlaps but
is sufficiently low-dimensional (e.g., binary), we suggest avoiding the OLS estimator and using
alternative methods, such as inverse probability weighting (e.g., Aronow and Samii, 2017; Leung,
2022; Gao and Ding, 2023), to directly estimate the causal treatment effects.
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This supplementary appendix contains proofs of the results in the main text as well as auxiliary
results. Appendix A discusses how to estimate the nuisance parameters consistently. Appendix B
contains technical lemmas. Appendix C contains proofs. Appendix D lists the papers we use for
the survey of network experiment research.

Appendix A. Example for γ̃n = γcausaln + op(1)

In Theorems 7 and 8, we need some γ̃n satisfying γ̃n = γcausaln + op(1). By Assumption 7
(ii), we, without loss of generality, assume that the first m elements of Zn,i depend on Rn,i

multiplicatively.11 We allow general heterogeneous treatment assignment D∗
n,i ∼ Bernoulli(pn,i).

We also assume that the researcher knows ρn or the population sample size n. Let Zn,i =

(Z ′
(1:m),n,i, Z

′
−(1:m),n,i)

′, where Z(1:m),n,i is the first m elements of Zn,i and Z−(1:m),n,i is the

remaining elements. Recall that Z̃n,i = Zn,i under Assumption 7.
Define

γ̃n = (P̃ZZ
n )−1P̃ZY

n , (10)

where

P̃ZZ
n =

1

N

n∑
i=1

Rn,i

(
ρnZ(1:m),n,iZ

′
(1:m),n,i ρnZ(1:m),n,iZ

′
−(1:m),n,i

ρnZ−(1:m),n,iZ
′
(1:m),n,i Z−(1:m),n,iZ

′
−(1:m),n,i

)
,

P̃ZY
n =

1

N

n∑
i=1

Rn,i

(
ρnZ(1:m),n,i

Z−(1:m),n,i

)
Yn,i.

Note that some elements of P̃ZZ
n and P̃ZY

n are rescaled by ρn from Q̃ZZ
n and Q̃ZY

n . ρn can be
replaced with N/n. The consistency of γ̃n is shown in Lemma 15.

Appendix B. Preliminary Results

Remember that for each i ∈ Nn,

Tn,i = g(i,Dn,An);

T̃n,i = g̃(i,Dn, Ãn);

Xn,i = Tn,i − ΛnZn,i;

X̃n,i = T̃n,i − Λ̃nZ̃n,i,

11In the usual applications, it is enough to consider the m = 1 case.
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where

Λn = (
n∑

i=1

E[Tn,iZ ′
n,i])(

n∑
i=1

E[Zn,iZ
′
n,i])

−1;

Λ̃n = (

n∑
i=1

Rn,iE[T̃n,i|Rn]Z̃
′
n,i)(

n∑
i=1

Rn,iZ̃n,iZ̃
′
n,i)

−1,

and

Ωn =
1

n

n∑
i=1

E


 Yn,i

Xn,i

Zn,i


 Yn,i

Xn,i

Zn,i


′ ≡

 ΩY Y
n ΩY X

n ΩY Z
n

ΩXY
n ΩXX

n ΩXZ
n

ΩZY
n ΩZX

n ΩZZ
n

 ;

Q̃n =
1

N

n∑
i=1

Rn,i

 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

≡

 Q̃Y Y
n Q̃Y X

n Q̃Y Z
n

Q̃XY
n Q̃XX

n Q̃XZ
n

Q̃ZY
n Q̃ZX

n Q̃ZZ
n

 ;

Ω̃n =
1

N

n∑
i=1

Rn,iE


 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

| Rn

 ≡

 Ω̃Y Y
n Ω̃Y X

n Ω̃Y Z
n

Ω̃XY
n Ω̃XX

n Ω̃XZ
n

Ω̃ZY
n Ω̃ZX

n Ω̃ZZ
n

 .

B.1. Preliminary Lemmas. We will use the following results from Kojevnikov et al. (2021).
We will only state the conditional version of the results, but also use the unconditional version
of the results, which can be understood analogously.

Condition 1. A triangular array {Un,i} is conditionally ψ-dependent given Rn with ζn satisfying

• For some constant C > 0,

ψa,b ≤ C × ab(∥f∥∞ + Lip(f))(∥g∥∞ + Lip(g)).

• supnmaxs≥1 ξn,s <∞ a.s.
• For some p > 4, supn≥1maxi∈Nn E[|Un,i|p | Rn] <∞ a.s.
• There exists a positive sequence mn → ∞ such that for k = 1, 2,

n

σ2+k
n

∑
s≥0

cn(s,mn; k)ζ
1− 2+k

p
n,s

a.s.−→ 0,

n2ζ
1−1/p
n,mn

σn

a.s.−→ 0.

• E[Un,i | Rn] = 0.

Define

σ2n = Var(Sn | Rn),

where Sn =
∑

i∈Nn
Ui,n.

Lemma 1 (CLT, Theorem 3.2 in Kojevnikov et al., 2021). Under Condition 1,

sup
t∈R

∣∣∣∣P{Snσn ≤ t | Rn

}
− Φ(t)

∣∣∣∣ a.s.−→ 0 as n→ ∞,
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where Φ denotes the distribution function of N (0, 1).

Lemma 2 (Linear Transformation, Lemma 2.1 in Kojevnikov et al., 2021). For each n ≥ 1, let
{cn,i}i∈Nn

be a sequence of σ(Rn)-measurable vectors such that maxi∈Nn ∥cn,i∥ ≤ 1 a.s. Under
the first condition of Condition 1, the array c′n,iUn,i is conditionally ψ-dependent given Rn with
the dependence coefficients {ζn}.

Condition 2. Let ω(x) = 1{|x| ≤ 1}. There exists p > 4 such that

• supn≥1maxi∈Nn E[|Un,i|p | Rn] <∞ a.s.
• limn→∞

∑
s≥1 |ω(s/2K)− 1| δ∂n(s, 1)ξ

1−(2/p)
n,s = 0 a.s.

• limn→∞ n−1
∑

s≥0 cn (s, 2K; 2) ξ
1−(4/p)
n,s = 0 a.s.

Lemma 3 (Variance Consistency, 2K Local Case of Proposition 4.1. in Kojevnikov et al., 2021).
Suppose that Conditions 1 and 2 hold. Then as n→ ∞,

E

∥∥∥∥∥∥ 1n
n∑

i=1

∑
j∈Nn(i;2K)

Un,iU
′
n,j −Var

(
Sn/

√
n
)∥∥∥∥∥∥

F

| Rn

 a.s.−→ 0,

where ∥ · ∥F is the Frobenius norm. By Markov’s inequality, we also have

1

n

n∑
i=1

∑
j∈Nn(i;2K)

Un,iU
′
n,j −Var

(
Sn/

√
n
) pR−→ 0.

B.2. Main Lemmas.

Lemma 4.

N > 0 a.s. for large enough n

Proof. Since the result is trivial for ρn = 1, we focus on the case ρn ∈ (0, 1). By the inequality
1− x ≤ e−x for x ∈ (0, 1), we have (1− ρn)

n ≤ e−nρn . Thus,
∞∑
n=1

P(N = 0) =
∞∑
n=1

(1− ρn)
n ≤

∞∑
n=1

e−nρn .

ρnn→ ∞ implies the right-hand side is bounded. By the Borel-Cantelli lemma, we can conclude.
□

Lemma 5.

N

nρn

a.s.−→ 1

as n→ ∞.

Proof. Pick any ε > 0. By Hoeffding’s inequality with Ri ∈ [0, 1],

P
(∣∣∣∣ Nnρn − 1

∣∣∣∣ > ε

)
= P (|N − nρn| > εnρn) = P

(∣∣∣∣∣
n∑

i=1

Ri − nρn

∣∣∣∣∣ > εnρn

)

≤ 2 exp

(
−2(εnρn)

2

n

)
= 2 exp

(
−2ε2nρ2n

)
.
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ρ2nn → ∞ implies
∑∞

n=1 P
(∣∣∣ N

nρn
− 1
∣∣∣ > ε

)
is bounded. From the Borel-Cantelli lemma, we can

conclude. □

Lemma 6. Assume that Assumptions 3 and 4 hold. Then, for large enough n,

Λn = Ln, Xn,i = Tn,i − E[Tn,i|Rn] a.s.,

and
Λ̃n = L̃n, X̃n,i = T̃n,i − E[T̃n,i|Rn] a.s.

Proof. Observe that Λn = Ln a.s. for large enough n as

Λn =
n∑

i=1

E[E[Tn,i|Rn]Z
′
n,i]

(
n∑

i=1

E[Zn,iZ
′
n,i]

)−1

= Ln

n∑
i=1

E[Zn,iZ
′
n,i]

(
n∑

i=1

E[Zn,iZ
′
n,i]

)−1

= Ln,

where Λn is well-defined by Assumption 3 and the second equality holds by Assumption 4.
Similarly, Λ̃n = L̃n a.s. for large enough n as

Λ̃n =

n∑
i=1

Rn,iE[T̃n,i|Rn]Z̃
′
n,i

(
n∑

i=1

Rn,iZ̃n,iZ̃
′
n,i

)−1

= L̃n

n∑
i=1

Rn,iZ̃n,iZ̃n,i

(
n∑

i=1

Rn,iZ̃n,iZ̃
′
n,i

)−1

= L̃n,

where Λ̃n is well-defined by Assumption 3 and the second equality holds by Assumption 4.
Since we define Xn,i = Tn,i − ΛnZn,i and X̃n,i = T̃n,i − Λ̃nZ̃n,i, Assumption 4 and the above

two displayed qualities imply for large enough n, Xn,i = Tn,i − E[Tn,i|Rn] a.s. and X̃n,i =

T̃n,i − E[T̃n,i|Rn] a.s. □

Lemma 7. Suppose that T̃n,i = Tn,i and Z̃n,i = Zn,i for all i ∈ Nn and n ∈ N. Under Assump-
tions 3 and 4, (i) Λ̃n = Λn a.s. and (ii) X̃n,i = Xn,i a.s.

Proof. The results follow directly from Lemma 6. □

Lemma 8. Assume that Assumptions 1 to 5 hold. The following sequences of triangular arrays
are ψ-dependent with ξn,s = 1{s ≤ 2K}:

Xn,iZ
′
n,i, Xn,iX

′
n,i, Xn,iYn,i, Zn,iZ

′
n,i, Zn,iYn,i.

The following sequences of triangular arrays are conditionally ψ-dependent given Rn with ξn,s =
1{s ≤ 2K}:

Rn,iX̃n,iZ̃
′
n,i, Rn,iX̃n,iT̃

′
n,i, Rn,iX̃n,iYn,i, Rn,iZ̃n,iZ̃

′
n,i, Rn,iZ̃n,iYn,i.
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Proof. By Assumption 5, we can set ξn,s = 1{s ≤ 2K} for s ≥ 1 since if dn(A,B) > 2K,
f(Un,A) ⊥⊥ g(Un,B) for any f ∈ Lv,a and g ∈ Lv,b as long as Un,i are based on T̃n,i, Tn,i, Z̃n,i, Zn,i, Ỹn,i, Yn,i.
for large enough n, Lemma 6 implies Xn,i = Tn,i−E[Tn,i|Rn] and X̃n,i = T̃n,i−E[T̃n,i|Rn] almost
surely. Thus, for large enough n, Xn,i and X̃n,i also have the local dependence with 2K. By
Assumption 3, each element is uniformly bounded. Thus, we can set ψa,b = 2∥f∥∞∥g∥∞ for any
f ∈ Lv,a and g ∈ Lv,b. This completes the proof. □

Lemma 9. Under Assumption 3,

max
i

|ε̃n,i| <∞ a.s. and max
i

|εn,i| <∞ a.s.

Proof. Under the uniform boundedness and the invertibility condition (Assumption 3), ∥θcausal,sample
n ∥ <

∞ a.s. and ∥γcausal,sample
n ∥ <∞ a.s. Thus, by the Schwarz Inequality,

|ε̃n,i| ≤ max
i

|Yn,i|+max
i

∥X̃n,i∥ × ∥θcausal,sample
n ∥+max

i
∥Z̃n,i∥ × ∥γcausal,sample

n ∥

<∞ a.s.

for all i. The bound for |εn,i| can be derived similarly. □

Lemma 10. Under Assumptions 1 to 6,

Q̃n − Ω̃n
pR−→ 0 and Q̃n − Ω̃n

p→ 0.

Proof. Let Wn,i ≡ (Yn,i, X̃n,i, Z̃n,i)
′. Then,

Q̃n − Ω̃n =
1

N

n∑
i=1

Rn,i(Wn,iW
′
n,i − E[Wn,iW

′
n,i|Rn])

=
nρn
N

× 1

nρn

n∑
i=1

Rn,i

(
Wn,iW

′
n,i − E[Wn,iW

′
n,i|Rn]

)
.

Since (nρn)/N
a.s.−→ 1 (Lemma 5) implies (nρn)/N

pR−→ 1, it suffices to show that

1

nρn

n∑
i=1

Rn,i

(
Wn,iW

′
n,i − E[Wn,iW

′
n,i|Rn]

) pR−→ 0.

We will show it by verifying

E

( 1

nρn

n∑
i=1

Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

))2

| Rn

 a.s.−→ 0
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for all k, ℓ = 1, . . . , d
T̃
. Observe that

E

( 1

nρn

n∑
i=1

Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

))2

| Rn


=

1

n2ρ2n

n∑
i=1

Rn,iE
[
(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])

2 | Rn

]
(11)

+
1

n2ρ2n

∑
i ̸=j

Rn,iRn,jE[(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])

× (Wn,j,(k)Wn,j,(ℓ) − E[Wn,j,(k)Wn,j,(ℓ)|Rn]) | Rn] (12)

For (11), since there is some absolute constant C such that |Wn,j,(k)Wn,j,(ℓ)| < C by Assump-
tion 3,

(11) ≤ 1

n2ρ2n

n∑
i=1

(2C)2 = 4C2 × 1

nρ2n
→ 0

where the inequality and the convergence do not depend on Rn.
For (12), note that if dn(i, j) > 2K, then

E[(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])(Wn,j,(k)Wn,j,(ℓ) − E[Wn,j,(k)Wn,j,(ℓ)|Rn]) | Rn] = 0

as Rn,i is i.i.d and (Tn,i, T̃n,i) ⊥⊥ (Tn,j , T̃n,j) with no overlap in Dn and Rn. Thus,

(12) =
1

n2ρ2n

n∑
i=1

∑
j∈N (i,2K)\{i}

Rn,iRn,jE[(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])

× (Wn,j,(k)Wn,j,(ℓ) − E[Wn,j,(k)Wn,j,(ℓ)|Rn]) | Rn]

≤ 4C2 × 1

nρ2n

∑
1≤s≤2K

δ∂n(s; 1) → 0,

where the last line holds by Assumption 6, and the inequality and the convergence do not depend
on Rn.

Thus, by Markov’s inequality for
(

1
nρn

∑n
i=1Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

))2
,

1

nρn

n∑
i=1

Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

) pR−→ 0,

and

Q̃n − Ω̃n
pR−→ 0.

Unconditional consistency can be shown easily from this result. Since a conditional probability
is bounded, the dominated convergence theorem and the law of iterated expectations imply
Q̃n − Ω̃n

p→ 0. □

Lemma 11. Let Wn,i be a scalar random variable satisfying |Wn,i| ≤ W < ∞ a.s. We allow
Wn,i to depend on Rn and Dn, but assume that Wn,i ⊥⊥ Rn,i and Wn,i ⊥⊥Wn,j if dn(i, j) > 2K.
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Then, under Assumptions 1 and 6,

1

N

n∑
i=1

Rn,iE[Wn,i|Rn]−
1

n

n∑
i=1

E[Wn,i]
p→ 0.

Proof. By Lemma 5,

1

N

n∑
i=1

Rn,iE[Wn,i|Rn] =
1

n

n∑
i=1

Rn,i

ρn
E[Wn,i|Rn] + op(1).

Thus, it suffices to show that

E

( 1

n

n∑
i=1

Rn,i

ρn
E[Wn,i|Rn]−

1

n

n∑
i=1

E[Wn,i]

)2
→ 0 (13)

The left-hand side of (13) is given by

1

n2

n∑
i=1

E

[(
Rn,i

ρn
E[Wi,n|Rn]− E[Wn,i]

)2
]

(14)

+
1

n2

∑
i ̸=j

E
[(

Rn,i

ρn
E[Wn,i|Rn]− E[Wn,i]

)(
Rn,j

ρn
E[Wn,j |Rn]− E[Wn,j ]

)]
(15)

For (14), we have

(14) ≤ 2

n2

n∑
i=1

E

[(
Rn,i

ρn

)2

(E[Wi,n|Rn])
2 + (E[Wn,i])

2

]

≤ 2W

n

[
E

[(
Rn,i

ρn

)2
]
+ 1

]
,

where the first inequality holds from the inequality (a − b)2 ≤ 2(a2 + b2) for any a, b ∈ R and
the second inequality holds by the uniform boundedness. Note that

1

n
E

[(
Rn,i

ρn

)2
]
=

1

nρn
= o(1).

For (15),

(15) =
1

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

E
[(

Rn,i

ρn
E[Wn,i|Rn]− E[Wn,i]

)(
Rn,j

ρn
E[Wn,j |Rn]− E[Wn,j ]

)]

≤ W
2

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

E
[∣∣∣∣Rn,i

ρn
− 1

∣∣∣∣ · ∣∣∣∣Rn,j

ρn
− 1

∣∣∣∣]

≤ W
2

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

E

[(
Rn,i

ρn
− 1

)2
]

=

(
1

ρn
− 1

)
W

2

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

1 = O

(
1

nρn

) ∑
1≤s≤2K

δ∂n(s; 1) = o(1),
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where the first equality holds by Wn,i ⊥⊥ Rn,j , Wn,i ⊥⊥Wn,j if dn(i, j) > 2K, and Assumption 1,
the first inequality holds by the uniform boundedness, the next inequality holds by the Cauchy-
Schwarz inequality, and the last step follows from Assumption 6.

Combining the arguments for (14) and (15), we have shown the convergence (13) as n →
∞. □

Lemma 12. Let Wn,i be a scalar random variable satisfying |Wn,i| ≤ W < ∞ a.s. We allow
Wn,i to depend on Rn and Dn, but assume that Wn,i ⊥⊥ Rn,i and Wn,i ⊥⊥Wn,j if dn(i, j) > 2K.
Then, under Assumptions 1 and 6,

1

N

n∑
i=1

Rn,iE[Rn,iWn,i|Rn]−
1

nρn

n∑
i=1

E[Rn,iWn,i] =
1

N

n∑
i=1

Rn,iE[Wn,i|Rn]−
1

n

n∑
i=1

E[Wn,i]

p→ 0.

Proof. The result follows by the same logic as Lemma 12. □

Lemma 13. Under Assumptions 1 to 6 and 8,

Σ̃−1/2
n

n∑
i=1

Rn,iX̃n,iε̃n,i
dR−→ N(0, Id

T̃
).

Proof. We use the Cramer-Wold device and verify Condition 1 for any given a ∈ R|T |.
First, we will transform the statistics and verify the zero expectation condition. The orthog-

onality condition for θcausal,sample
n (4) implies

n∑
i=1

Rn,iE
[
X̃n,iε̃n,i | Rn

]
= 0. (16)

Define Un,i ≡ Rn,iX̃n,iε̃n,i−E
[
Rn,iX̃n,iε̃n,i | Rn

]
. Then, Σ̃−1/2

n
∑n

i=1Rn,iX̃n,iε̃n,i = Σ̃
−1/2
n

∑n
i=1 Un,i

and we have E[Un,i | Rn] = 0 for all i.
By the Cramer-Wold device, it suffices to show that∑n

i=1 a
′Un,i√

a′Σ̃na

dR−→ N(0, 1)

for any a ∈ Rd
T̃ with a′a = 1.

By Lemmas 2 and 8, a′Un,i is conditionally ψ-dependent with ζn,s = 1{s ≤ 2K} given Rn.
The other conditions are assumed in Assumption 8. □

Lemma 14. Under Assumptions 1 to 8,

Σ−1/2
n

n∑
i=1

Rn,iXn,iεn,i
d→ N(0, IdT ).

Proof. An orthogonality condition for θcausaln (3) implies
n∑

i=1

E [Xn,iεn,i] = 0. (17)
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By Assumptions 2 and 7 (i),

Xn,iεn,i = Xn,i(Yn,i −X ′
n,iθ

causal
n − Z ′

n,iγ
causal
n )

= Xn,iT
′
n,iθn,i +Xn,iνn,i −Xn,iX

′
n,iθ

causal
n −Xn,iZ

′
n,iγ

causal
n .

By Assumption 1 and the definition of the exposure mapping, Rn,i enters only multiplicatively
for Tn,i and Xn,i = Tn,i−E[Tn,i|Rn]. By Lemma 6 and Assumption 7 (ii), each element of Zn,i is
multiplicatively in Rn,i. Thus, each element of Xn,iεn,i is multiplicatively in Rn,i by R2

n,i = Rn,i.
Combining it with the orthogonality,

n∑
i=1

E[Rn,iXn,iεn,i] = 0.

Define Un,i = Rn,iXn,iεn,i − E[Rn,iXn,iεn,i]. Then, we have

Σ−1/2
n

n∑
i=1

Rn,iXn,iεn,i = Σ−1/2
n

n∑
i=1

Un,i +Σ−1/2
n

n∑
i=1

E[Rn,iXn,iεn,i]

= Σ−1/2
n

n∑
i=1

Un,i,

and E[Un,i] = 0.
The other parts of the proof are similar to Lemma 13. □

Lemma 15. Under Assumptions 1 to 6,

γ̂n − γcausal,sample
n

pR−→ 0.

If we assume Assumption 7 additionally,

γ̃n − γcausaln
p→ 0,

where γ̃n is defined in (10).

Proof. We can show γ̂n − γcausal,sample
n

pR−→ 0 by Lemma 10 as the proof for Theorem 3.

Next, we show γ̃n−γcausaln
p→ 0. By Lemma 10, P̃ZZ

n
pR−→ E[P̃ZZ

n |Rn] and P̃ZY
n

pR−→ E[P̃ZY
n |Rn].

By Lemma 11 and Lemma 12, E[P̃ZZ
n |Rn]

p→ ΩZZ
n and E[P̃ZY

n |Rn]
p→ ΩZY

n . Thus, we can
conclude by the continuous mapping theorem. □

Appendix C. Proofs

C.1. Proof of Theorem 1.

Proof. Lemma 6 implies that

ΩXZ
n = 0 = E[(Tn,i − E[Tn,i|Rn])Z

′
n,i] = 0

for large enough n. Similarly,

Ω̃XZ
n = E[X̃n,iZ̃

′
n,i|Rn] = E[(T̃n,i − E[T̃n,i|Rn])Z̃

′
n,i|Rn] = 0 a.s.

for large enough n since Z̃n,i is measurable with respect to σ(Rn).
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Therefore, for large enough n,

θcausaln =
(
ΩXX
n

)−1
ΩXY
n ,

and

θcausal,sample
n =

(
Ω̃XX
n

)−1
Ω̃XY
n a.s.

They are well-defined under Assumption 3. Then, it suffices to show that for large enough n,

E[Xn,iYn,i] = E[Xn,iX
′
n,i]θn,i,

and

E[X̃n,iYn,i|Rn] = E[X̃n,iX
′
n,i|Rn]θn,i a.s.

The following transformations hold for large enough n:

E[Xn,iYn,i] = E[Xn,iT
′
n,i]θn,i + E[Xn,i]νn,i

= E[Xn,iX
′
n,i]θn,i + E[Xn,i(Tn,i −Xn,i)

′]θn,i

= E[Xn,iX
′
n,i]θn,i + E[Xn,i]Z

′
n,iΛ

′
nθn,i

= E[Xn,iX
′
n,i]θn,i,

where the first equality holds by Assumption 2, the third equality follows by the definition of
Xn,i, and the last equality follows by E[Xn,i] = 0, which is implied by Lemma 6. Similarly, the
following transformations hold almost surely for large enough n:

E[X̃n,iYn,i] = E[X̃n,iT
′
n,i|Rn]θn,i + E[X̃n,i|Rn]νn,i

= E[X̃n,iXn,i|Rn]θn,i + E[X̃n,i(Tn,i −Xn,i)
′|Rn]θn,i

= E[X̃n,iX
′
n,i|Rn]θn,i + E[X̃n,i|Rn]Z

′
n,iΛ

′
nθn,i

= E[X̃n,iX
′
n,i|Rn]θn,i,

where we used E[X̃n,i|Rn] = 0. This completes the proof. □

C.2. Proof of Theorem 2.

Proof. By the population version of the Frisch-Waugh-Lovell theorem,

θcausaln,(k) =

∑n
i=1 E[Un,i,(k)Yn,i]∑n

i=1 E[U2
n,i,(k)]

By the linearity of the model (Assumption 2), the numerator can be transformed as
n∑

i=1

E[Un,i,(k)Yn,i] =

n∑
i=1

E[Un,i,(k)T
′
n,i]θn,i +

n∑
i=1

E[Un,i,(k)]νn,i

=
n∑

i=1

E[Un,i,(k)Xn,i,(k)]θn,i,(k) +
n∑

i=1

E[Un,i,(k)X
′
n,i,(−k)]θn,i,(−k),

where the second equality holds as E[Un,i,(k)] = 0, which is implied by E[Xn,i] = 0, a consequence
of Lemma 6.
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Similarly,

θcausal,sample
n,(k) =

∑n
i=1 E[Ũn,i,(k)Yn,i|Rn]∑n

i=1 E[Ũ2
n,i,(k)|Rn]

.

The numerator is given by
n∑

i=1

Rn,iE[Ũn,i,(k)Yn,i|Rn] =

n∑
i=1

Rn,iE[Ũn,i,(k)T
′
n,i|Rn]θn,i

=
n∑

i=1

Rn,i

dT∑
l=1

E[Ũn,i,(k)Xn,i,(l)|Rn]θn,i,(l).

Under dT = d
T̃
, the last equation can be simplified further to

n∑
i=1

Rn,iE[Ũn,i,(k)Xn,i,(k)|Rn]θn,i,(k) +
n∑

i=1

∑
l ̸=k

Rn,iE[Ũn,i,(k)Xn,i,(l)|Rn]θn,i,(l)

as above. This completes the proof. □

C.3. Proof of Corollary 1.

Proof. By Lemma 6,

E[X̃n,i,(k)Xn,i,(l)|Rn]

=E[(T̃n,i,(k) − E[T̃n,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)])|Rn]

=E[(T̃n,i,(k) − E[T̃n,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)|Rn] + E[Tn,i,(l)|Rn]− E[Tn,i,(l)])|Rn]

=E[(T̃n,i,(k) − E[T̃n,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)|Rn])|Rn]

=Cov(T̃n,i,(k), Tn,i,(l)|Rn).

Also,
E[Xn,i,(k)Xn,i,(l)] = E[(Tn,i,(k) − E[Tn,i,(k)|Rn]))(Tn,i,(l) − E[Tn,i,(l)|Rn]))].

By the condition stated in Corollary 1, E[Xn,i,(k)Xn,i,(k)] = 0 and E[X̃n,i,(k)Xn,i,(l)|Rn] = 0

for any k ̸= l. By the definition of Un,i,(k) and Ũn,i,(k), we have Un,i,(k) = Xn,i,(k) and Ũn,i,(k) =

X̃n,i,(k).
Moreover, the numerator of θcausal,sample

n,(k) is

n∑
i=1

Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]θn,i,(k) +

n∑
i=1

∑
l∈{1,··· ,dT }\{k}

Rn,iE[X̃n,i,(k)Xn,i,(l)|Rn]θn,i,(l)

=
n∑

i=1

Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]θn,i,(k),

and Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn] ≥ 0 if we assume that Cov(T̃n,i,(k), Tn,i,(k)|Rn) ≥ 0. □

C.4. Proof of Theorem 3.
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Proof. By Lemma 6, we have E[X̃n,iZ̃n,i|Rn] = 0 a.s. for large enough n. Thus, Q̃ZX
n , Q̃XZ

n
a.s.−→ 0.

Since (
θ̂n

γ̂n

)
=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1(
Q̃XY

n

Q̃ZY
n

)
,

Lemma 10 implies that

θ̂n − θcausal,sample
n = θ̂n − (Ω̃XX

n )−1Ω̃XY
n + opR(1)

pR−→ 0,

which further implies
θ̂n − θcausal,sample

n
p→ 0.

□

C.5. Proof of Theorem 4.

Proof. By Lemma 6, we have E[Xn,iZn,i|Rn] = 0 a.s. and E[Xn,iZn,i] = 0 for large enough
n. Thus, for large enough n, θcausal,sample

n = (Ω̃XX
n )−1Ω̃XY

n a.s. and θcausaln = (ΩXX
n )−1ΩXY

n .
Without loss of generality, assume that the first element of Tn,i depends on Rn,iD

∗
n,i. By As-

sumption 7 (i) and (iii), we can treat the first element of θcausal,sample
n,(1) and θcausal,sample

n,(1) the
other elements separately as θcausaln,(1) = (ΩXX

n,(1,1))
−1ΩXY

n,(1,1), θ
causal
n,(−1) = (ΩXX

n,(−1,−1))
−1ΩXY

n,(−1,−1),

θcausal,sample
n,(1) = (Ω̃XX

n,(1,1))
−1Ω̃XY

n,(1,1), and θcausal,sample
n,(−1) = (Ω̃XX

n,(−1,−1))
−1Ω̃XY

n,(−1,−1), where Ωn,(1,1) is
the (1, 1) element of Ωn and Ωn,(−1,−1) is the submatrix of Ωn except for its first row and first
column and Ω̃n,(1,1) is defined analogously. By Lemma 11,

θcausal,sample
n,(−1) = (Ω̃XX

n,(−1,−1))
−1Ω̃XY

n,(−1,−1)

p→ (ΩXX
n,(−1,−1))

−1ΩXY
n,(−1,−1) = θcausaln,(−1)

By Lemma 12,

θcausal,sample
n,(1) = (Ω̃XX

n,(1,1))
−1Ω̃XY

n,(1,1)

p→ ((1/ρn)Ω
XX
n,(1,1))

−1(1/ρn)Ω
XY
n,(1,1) = θcausaln,(1)

We can conclude by stacking them. □

C.6. Proof of Theorem 5.

Proof. We have Ω̃XZ
n

a.s.−→ 0 and (nρn)/N
a.s.−→ 1 under the invertibility and the moment condi-

tions. Thus,

√
nρn

(
θ̂n − θcausal,sample

n

γ̂n − γcausal,sample
n

)

=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1( √
nρn
N

∑n
i=1Rn,iX̃n,iε̃n,i√

nρn
N

∑n
i=1Rn,iZ̃n,iε̃n,i

)

=

( Q̃XX
n O

O Q̃ZZ
n

)−1

+ opR(1)

 (1 + opR(1))
1√
nρn

∑n
i=1Rn,iX̃n,iε̃n,i

(1 + opR(1))
1√
nρn

∑n
i=1Rn,iZ̃n,iε̃n,i

 ,
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and it suffices to show12

1
√
nρn

n∑
i=1

Rn,iX̃n,iε̃n,i = OpR(1), (18)

1
√
nρn

n∑
i=1

Rn,iZ̃n,iε̃n,i = OpR(1), (19)

1
√
nρn

Σ̃−1/2
n = Oa.s.(1) (20)

since these conditions imply that

Σ̃−1/2
n Q̃XX

n

(
θ̂n − θcausal,sample

n

)
=

1
√
nρn

Σ̃−1/2
n Q̃XX

n

(
Q̃XX

n

)−1 1
√
nρn

n∑
i=1

Rn,iX̃n,iε̃n,i + opR(1),

and we can conclude the convergence in conditional distribution with Lemma 13. The dominated
convergence theorem and the law of iterated expectations imply the unconditional result.

We show (18)-(20). By Chebyshev’s inequality, it suffices to show that its conditional variance
is almost surely bounded.

Var

(
1√
n

n∑
i=1

Rn,i√
ρn
X̃n,iε̃n,i | Rn

)

=
1

n

n∑
i=1

Var

(
Rn,i√
ρn
X̃n,iε̃n,i | Rn

)
+

1

n

n∑
i=1

∑
j∈Nn(i,2K)\{i}

Cov

(
Rn,i√
ρn
X̃n,iε̃n,i,

Rn,j√
ρn
X̃n,j ε̃n,j | Rn

)

≤ 1

n

n∑
i=1

Rn,i

ρn
E
[
X̃n,iX̃

′
n,iε̃

2
n,i | Rn

]
(21)

+
1

n

n∑
i=1

∑
j∈Nn(i,2K)\{i}

Rn,iRn,j

ρn

(
E
[
X̃n,iX̃

′
n,j ε̃n,iε̃n,j | Rn

]
− E

[
X̃n,iε̃n,i | Rn

]
E
[
X̃n,j ε̃n,j | Rn

]′)
.

(22)

Each element of the first term (21) is almost surely bounded by(
N

nρn

)
·max

i
∥X̃n,i∥2 ·max

i
|ε̃n,i|2.

Thus, the first term (21) is Oa.s.(1) by Assumption 3 and Lemmas 5 and 9. The second term (22)
is also Oa.s.(1) by a similar argument as the first term and Assumption 6. Similarly, we can show
that (19) is OpR(1). (20) is also Oa.s.(1) by the invertibility assumption (Assumption 3). □

C.7. Proof of Theorem 6.

12A random variable Xn is OpR(1) if for any ε > 0, there exist some constant Mε < ∞ such that

P (∥Xn∥ > Mε | Rn) < ε a.s.

for large enough n.
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Proof. Since X̃n,i = Xn,i and Z̃n,i = Zn,i,

√
nρn

(
θ̂n − θcausaln

γ̂n − γcausaln

)

=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1( √
nρn
N

∑n
i=1Rn,iXn,i(Yn,i −X ′

n,iθ
causal
n − Z ′

n,iγ
causal
n )

√
nρn
N

∑n
i=1Rn,iZn,i(Yn,i −X ′

n,iθ
causal
n − Z ′

n,iγ
causal
n )

)

=

( Q̃XX
n O

O Q̃ZZ
n

)−1

+ op(1)


×

 (1 + op(1))
1√
nρn

∑n
i=1Rn,iXn,iεn,i

(1 + op(1))
1√
nρn

∑n
i=1Rn,iZn,iεn,i

 .

By a similar way to the proof of Theorem 5, we can show that

1
√
nρn

n∑
i=1

Rn,iXn,iεn,i = Op(1), (23)

1
√
nρn

n∑
i=1

Rn,iZn,iεn,i = Op(1), (24)

1
√
nρn

Σ−1/2
n = Op(1). (25)

Thus, (23) to (25) imply that

Σ−1/2
n Q̃XX

n

(
θ̂n − θcausaln

)
=

1
√
nρn

Σ−1/2
n Q̃XX

n

(
Q̃XX

n

)−1 1
√
nρn

n∑
i=1

Rn,iXn,iεn,i + op(1),

and we can conclude with Lemma 14. □

C.8. Proof of Theorem 7.

Proof. [Proof for 1
nρn

Σ̃n]
Let

1

nρn
Σ̃†
n =

1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,j

(
Ψ̃n,i − E

[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
.

Then, Lemma 3 implies that
1

nρn
Σ̃†
n =

1

nρn
Σ̃n + opR(1).

Hence, it suffices to show that

1

N
Σ̂n =

1

nρn
Σ̃†
n + B̃n + opR(1).

Here, maxi |ε̂n,i − ε̃n,i| = oRp (1) by Assumption 3, Theorem 3, and Lemma 15. Also,

1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jX̃n,iX̃
′
n,j ε̂n,iε̂n,j = Oa.s.(1)
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by Assumptions 3 and 6, ρ ∈ (0, 1], and Lemma 9. Thus, we can show that

1

N
Σ̂n =

1

N

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jΨ̂n,iΨ̂
′
n,j

=
1

N

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jX̃n,iX̃
′
n,j ε̂n,iε̂n,j

=
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jX̃n,iX̃
′
n,j ε̃n,iε̃n,j + opR(1), (26)

where the last equality holds by Lemma 5.
Then,

(26) =
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jΨ̃n,iΨ̃
′
n,j + opR(1)

=
1

nρn
Σ̃†
n + B̃n + opR(1) (27)

+
2

nρn

n∑
i=1

n∑
j=1

Rn,iRn,j

(
Ψ̃n,i − E

[
Ψ̃n,i | Rn

])
E
[
Ψ̃n,j | Rn

]′
1{d̃n(i, j) ≤ 2K}, (28)

thus, it suffices to show that the remainder term (28) = opR(1).
We will show it element-wise. Take the (k, k′)-element of (28). Let

φ̃i =
n∑

j=1

Rn,jE
[
Ψ̃n,j,(k′) | Rn

]
1{d̃n(i, j) ≤ 2K}.

Then,

E
[∣∣(k, k′)-element of (28)

∣∣ | Rn

]
=E

[∣∣∣∣∣ 2

nρn

n∑
i=1

Rn,i

(
Ψ̃n,i − E

[
Ψ̃n,i,(k) | Rn

])
φ̃i

∣∣∣∣∣ | Rn

]

≤E

( 2

nρn

n∑
i=1

Rn,i

(
Ψ̃n,i − E

[
Ψ̃n,i,(k) | Rn

])
φ̃i

)2

| Rn

1/2

≤ 2

ρn

 1

n2

n∑
i=1

Var
(
Ψ̃n,i,(k) | Rn

)
φ̃2
i +

1

n2

n∑
i=1

∑
j ̸=i

∣∣∣Cov (Ψ̃n,i,(k), Ψ̃n,j,(k) | Rn

)∣∣∣× |φ̃iφ̃j |

1/2

,

where the first inequality follows from Jensen’s inequality.
By Assumption 3 and Lemma 9, Ψ̃n,i,(k) is uniformly bounded, thus maxiVar

(
Ψ̃n,i,(k) | Rn

)
=

Oa.s.(1) and φ̃2
i ≤ C × (

∑n
j=1 1{d̃n(i, j) ≤ 2K})2 ≤ C × |Nn(i; 2K)|2 for some constant C > 0.

Hence, 1
n2

∑n
i=1Var

(
Ψ̃n,i,(k) | Rn

)
φ̃2
i ≤ C ′δn(2K, 2)/n for some constant C ′ > 0. By Assump-

tion 9 (i), δn(2K, 2)/n→ 0 as n→ ∞.
By Lemma 8, Ψ̃n,i,(k) is conditionally ψ-dependent with ξn,s = 1{s ≤ 2K} given Rn, thus∣∣∣Cov (Ψ̃n,i,(k), Ψ̃n,j,(k) | Rn

)∣∣∣ ≤ C ′′ × 1{s ≤ 2K} × 1{dn(i, j) = s} for some constant C ′′ > 0.
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Thus,

1

n2

n∑
i=1

∑
j ̸=i

∣∣∣Cov (Ψ̃n,i,(k), Ψ̃n,j,(k) | Rn

)∣∣∣× |φ̃iφ̃j |

≤C
′′

n2

2K∑
s=1

n∑
i=1

∑
j ̸=i

1{dn(i, j) = s}|φ̃iφ̃j |

≤C
′′′

n2

2K∑
s=1

Jn(s, 2K)

for some constant C ′′′ > 0. By Assumption 9 (ii),
∑2K

s=1 Jn(s, 2K)/n2 → 0 as n→ ∞.
Therefore, we have shown that E [|(k, k′)-element of (28)| | Rn] = opR(1). By Markov’s in-

equality, we can conclude that the remainder term (28) = opR(1).

[Proof for 1
nρn

Σn] Let

1

nρn
Σ†
n =

1

nρn

n∑
i=1

n∑
j=1

(Rn,iΨn,i − ρnE[Ψn,i]) (Rn,jΨn,j − ρnE[Ψn,j ])
′
1{d̃n(i, j) ≤ 2K}.

We can show that

1

N
Σ̂n =

1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iΨn,iRn,jΨ
′
n,j + op(1)

=
1

nρn

n∑
i=1

n∑
j=1

Rn,iΨn,iRn,jΨ
′
n,j1{d̃n(i, j) ≤ 2K}+ op(1)

=
1

nρn
Σ†
n + B̂n + op(1)

+
2

nρn

n∑
i=1

n∑
j=1

(Rn,iΨn,i − ρnE[Ψn,i])Rn,jΨ
′
n,j1{d̃n(i, j) ≤ 2K}

+
1

n

n∑
i=1

∑
j∈Nn(i,2K)

ρnE[Ψn,i]E[Ψn,j ]
′
(
1{d̃n(i, j) ≤ 2K} − P(d̃n(i, j) ≤ 2K)

)
=

1

nρn
Σ†
n + B̂n + op(1),

where the first equality follows by the similar arguments as we derive (26) and by Lemma 7, the
second and third equalities are just transformations, and the last equality holds by the similar
arguments for the remainder term (28).

Thus, it suffices to show that

1

nρn
Σ†
n =

1

nρn
Σn + op(1). (29)

We will show it element-wise. Take the (k, k′)-element of 1
nρn

Σ†
n − 1

nρn
Σn. Let

φi =
n∑

j=1

(
Rn,jΨn,j,(k′) − ρnE[Ψn,j,(k′)]

)
1{d̃n(i, j) ≤ 2K}.
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Then, by the similar arguments for the remainder term (28),

E
[∣∣∣∣(k, k′)-element of

1

nρn
Σ†
n − 1

nρn
Σn

∣∣∣∣] = 1

nρn

n∑
i=1

(
Rn,iΨn,i,(k) − ρnE[Ψn,i,(k)]

)
φi = o(1).

□

C.9. Proof of Theorem 8.

Proof. Let 1
N Σ̂−

n = 1
N

∑n
i=1

∑n
j=1Rn,iRn,jΨ̂n,iΨ̂

′
n,jK̃

−
n,i,j . Since K̃+

n = K̃n + K̃−
n ,

1

N
Σ̂+
n =

1

N
Σ̂n +

1

N
Σ̂−
n .

[Proof for 1
nρn

Σ̃n]
Theorem 7 implies

1

N
Σ̂n

=
1

nρn
Σ̃n + B̃n + opR(1)

=
1

nρn
Σ̃n +

1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′ (
K̃+

n,i,j − K̃−
n,i,j

)
+ opR(1).

By the same logic for the proof of Theorem 7 after replacing 1{d̃n(i, j) ≤ 2K} by K̃−
n,i,j and

Assumption 9 by Assumption 10, we can show that

1

N
Σ̂−
n =

1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′
K̃−

n,i,j

+
1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[(

Ψ̃n,i − E
[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
| Rn

]
K̃−

n,i,j .

We get the conclusion by combining these results.
[Proof for 1

nρn
Σn]

The proof is similar. By the same logic for the proof of Theorem 7,

1

N
Σ̂−
n =

1

n

n∑
i=1

n∑
j=1

ρnE [Ψn,i]E [Ψn,j ]
′ E
[
K̃−

n,i,j

]

+
1

nρn

n∑
i=1

n∑
j=1

E
[
(Rn,iΨn,i − ρnE [Ψn,i]) (Rn,jΨn,j − ρnE [Ψn,j ])

′ K̃−
n,i,j

]
.

We get the conclusion by combining it with the result of Theorem 7. □

Appendix D. Survey of OLS usage in network experiment applications

In this section, we summarize our survey of the usage of OLS in network experiment applica-
tions in economics.

We considered papers published between April 2010 and April 2025 in the following journals:
American Economic Review, Econometrica, Quarterly Journal of Economics, Journal of Political
Economy, Review of Economic Studies, American Economic Journal: Applied Economics, and
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Journal of Development Economics. We searched for articles that included both “networks” and
either “field experiments” or “randomized trial” as keywords on the Web of Science platform. This
search yielded 52 papers, as listed in Table 6. We then reviewed each paper to determine whether
it conducted a network experiment and estimated spillover effects using regression. Among these,
29 papers ran regressions to estimate spillover effects; all 29 used the OLS estimator, while only
two papers (Coutts, 2022 and Fafchamps and Vicente, 2013) mentioned propensity scores or used
related estimators.

Table 6. Survey of OLS usage in network experiment applications

Citation Field/Lab Exp w/
Network?

Regression for
Causal Effects?

Estimator(s) Used

Evsyukova, Rusche and Mill
(2024)

Yes Yes OLS, Causal Forest

Batista, Costa, Freitas, Lima
and Reis (2025)

No Yes OLS

Karing (2024) No Yes OLS, Logit
Chegere, Falco and Menzel
(2024)

Yes Yes OLS

Deutschmann, Lipscomb,
Schechter and Zhu (2024)

Yes Yes OLS

Barsbai, Licuanan, Steinmayr,
Tiongson and Yang (2024)

No Yes OLS

Banerjee, Breza, Chan-
drasekhar and Golub (2024)

No Yes OLS, IV

Colonnelli, Li and Liu (2024) No Yes OLS, DiD
Hernandez-Agramonte, Na-
men, Naslund-Hadley and
Biehl (2024)

No Yes OLS, IPW, Logit

Borusyak and Hull (2023) No Yes OLS, 2SLS
Banerjee, Breza, Chan-
drasekhar, Duflo, Jackson
and Kinnan (2023)

Yes Yes OLS

Soldani, Hildebrandt, Nyarko
and Romagnoli (2023)

Yes Yes OLS

Bobonis, Gertler, Gonzalez-
Navarro and Nichter (2022)

No Yes OLS, IV

Alan, Corekcioglu and Sutter
(2022)

Yes Yes OLS

Coutts (2022) Yes Yes Propensity score
matching, OLS

Leung (2022) No (method) - -
Bjorkegren and Karaca (2022) Yes No, Structural OLS

Continued on next page
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Citation Field/Lab Exp w/
Network?

Regression? Estimator(s) Used

Beaman, BenYishay, Magruder
and Mobarak (2021)

Yes Yes OLS

Hess, Jaimovich and Schuen-
deln (2021)

Yes Yes OLS

Meghir, Mobarak, Mommaerts
and Morten (2022)

No Yes OLS

Carter, Laajaj and Yang (2021) Yes Yes OLS,
Hardy and McCasland (2021) Yes Yes OLS
Breza, Chandrasekhar, Mc-
Cormick and Pan (2020)

No (method) - -

Abel, Burger and Piraino
(2020)

No Yes OLS

Afridi, Dhillon, Li and Sharma
(2020)

Yes Yes OLS

Drago, Mengel and Traxler
(2020)

Yes Yes OLS

BenYishay, Jones, Kondylis
and Mobarak (2020)

Yes Yes OLS

Cai (2020) No Yes OLS, Propensity
Score Matching

Banerjee, Chandrasekhar, Du-
flo and Jackson (2019)

Yes Yes OLS

Kandpal and Baylis (2019) No (natural experi-
ment)

Yes OLS, IV

Benyishay and Mobarak (2019) Yes Yes OLS
Boltz, Marazyan and Villar
(2019)

Yes Yes OLS, Logit

Breza and Chandrasekhar
(2019)

Yes Yes OLS

Flory (2018) Yes Yes OLS
Chandrasekhar, Kinnan and
Larreguy (2018)

Yes Yes OLS

Cai and Szeidl (2018) Yes Yes OLS
Di Falco, Feri, Pin and Vollen-
weider (2018)

Yes Yes OLS

Gine and Mansuri (2018) No (cluster) Yes OLS, IV
Kessler (2017) No Yes OLS,
Cruz, Labonne and Querubin
(2017)

No Yes OLS, IV,

Continued on next page
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Citation Field/Lab Exp w/
Network?

Regression? Estimator(s) Used

Barnhardt, Field and Pande
(2017)

Yes Yes OLS

Belloni, Chernozhukov,
Fernandez-Val and Hansen
(2017)

No (method) - -

Pallais and Sands (2016) No Yes OLS
Alatas, Banerjee, Chan-
drasekhar, Hanna and Olken
(2016)

Yes Yes OLS

Nagavarapu and Sekhri (2016) No Yes OLS
Levine, Polimeni and Ramage
(2016)

No Yes OLS

Jakiela and Ozier (2016) Yes Yes OLS
Cai, De Janvry and Sadoulet
(2015)

Yes Yes OLS

Callen and Long (2015) No Yes OLS
Fafchamps and Vicente (2013) Yes Yes OLS, Propensity

score matching
Robinson (2012) No Yes OLS
Godlonton and Thornton
(2012)

Yes Yes OLS

Notes: The first column lists the citation of the paper. The second column indicates whether
the paper uses a field or lab experiment with a network structure. The third column indicates
whether the paper uses regression to estimate causal effects, and the fourth column lists the
specific estimator(s) used in the regression analysis. Methodological papers are marked with
“No (method)” in the second column and do not have the third and fourth columns filled in.
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