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Abstract. Ordinary least squares (OLS) estimators are widely used in network experiments

to estimate spillover effects. We study the causal interpretation of, and inference for the OLS es-

timator under both design-based uncertainty from random treatment assignment and sampling-

based uncertainty in network links. We show that correlations among regressors that capture

the exposure to neighbors’ treatments can induce contamination bias, preventing OLS from

aggregating heterogeneous spillover effects for a clear causal interpretation. We derive the OLS

estimator’s asymptotic distribution and propose a network-robust variance estimator. Simu-

lations and an empirical application demonstrate that contamination bias can be substantial,

leading to inflated spillover estimates.
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1. Introduction

Network experiments, or randomized controlled trials (RCTs) on networks, have become in-
creasingly common in applied economics (e.g., Cai, de Janvry and Sadoulet, 2015; Dizon, Gong
and Jones, 2020; Carter, Laajaj and Yang, 2021; Fernando, 2021; Beaman, BenYishay, Ma-
gruder and Mobarak, 2021). A central objective of these experiments is to estimate the “spillover
effect” of policy interventions as they propagate through networks. For example, Cai et al.
(2015) estimate spillover effects from randomly assigned information sessions on rice farmers’
decisions to purchase a weather insurance product in Chinese villages. In this paper, we develop
a comprehensive theoretical framework for ordinary least squares (OLS) estimators in network
experiments, explicitly accounting for both design-based uncertainty, arising from randomness
in treatment assignment, and sampling-based uncertainty, arising from randomness in sampling
units and network links. Our theory is motivated by two key gaps between empirical practice in
applied work and existing econometric theory.

The first gap lies in the choice of estimator. In applications, researchers predominantly use
OLS estimators to estimate spillover effects, employing exposure mappings that summarize treat-
ment status and network structure. In our survey of 29 papers analyzing network experiments,
published in the “top 5” economics journals and two leading field journals, all of the studies report
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using the OLS estimator, while only two papers use propensity score-based estimators.1 This
pattern stands in contrast to the theoretical literature on inference in network experiments (e.g.,
Aronow and Samii, 2017; Leung, 2022; Gao and Ding, 2023), which provides inference results for
inverse probability weighting (IPW) estimators that directly estimate average spillover effects.

The other gap is due to ignoring a source of randomness. In many applied cases, researchers
need to collect network information through surveys. This collection process can introduce an
extra layer of uncertainty beyond design-based uncertainty. Moreover, the collected network may
only partially capture the true network governing the propagation mechanism. By contrast, the
theoretical literature on causal inference in network experiments typically abstracts away from
sampling-based uncertainty, assuming that the data correspond to the entire population and that
the observed network is complete.

To address these gaps, we make three contributions. First, we develop a novel framework
that jointly incorporates design-based randomness in treatment assignment and sampling-based
randomness in network links. Our framework considers a finite population of n units, from
which units are randomly sampled and treatments are assigned. We explicitly model the network
sampling process, focusing on two common sampling methods: (i) induced subgraph sampling,
where each sampled unit reports friends within the sample, and (ii) star sampling, where each
sampled unit reports friends from the entire population. In this setup, unlike in non-network
experiments, sampling-based uncertainty arises from two sources: (i) which units are sampled,
and (ii) which links are observed. We consider potential outcomes that depend on the entire
treatment vector, thus violating the Stable Unit Treatment Value Assumption (SUTVA). To
address the resulting dimensionality problem, we assume that the potential outcomes are linear
in an exposure mapping, a set of user-specified sufficient statistics summarizing treatment status
and network structure. For example, a common exposure mapping includes the fraction of one’s
friends who are treated. Importantly, we do not assume that the user-specified exposure mapping
is correctly specified; it may differ from the true exposure mapping in both functional form and
dimension. This flexibility also allows us to incorporate censored network links in a unified way.

As our second contribution, we investigate whether the estimands associated with the OLS
estimator can be interpreted as causal spillover effects. We distinguish between two causal
targets: a population-level estimand and a sample-level estimand. The population-level estimand
is defined as the weighted average of the treatment effect vector across the entire population,
including those who are not sampled, with complete network information. On the other hand,
the sample-level estimand is defined as the sample average of the treatment effect vector across
the sampled units, with the sampled network information. We show that both types of estimands
can be contaminated: each element of the multi-dimensional estimands may reflect causal effects
from other elements of the exposure mapping vector. With heterogeneous treatment effects,

1Specifically, we considered papers published from April 2010 through April 2025 in the following journals: Amer-
ican Economic Review, Econometrica, Quarterly Journal of Economics, Journal of Political Economy, Review of
Economic Studies, American Economic Journal: Applied Economics, and Journal of Development Economics.
We searched for articles that listed “networks” and either “field experiments” or “randomized trial” as keywords
on the Web of Science platform. This search resulted in 52 papers, of which 29 conducted network experiments
and are mentioned in the text. These papers are referenced in Appendix E.
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correlations among elements in the exposure mapping vector (e.g., the proportion of treated
friends and the proportion of friends’ treated friends) blur the distinction between the true causal
effects in one element and those in another. Although the population-level causal estimand can
be free from contamination if the exposure mapping is defined such that there is no correlation
among its elements, the sample-level causal estimand can still be subject to contamination, and
thus lacks causal interpretability due to network sampling. Missing links can create undesirable
correlations between the observed and true exposure mapping across different elements. As a
result, the two estimands can remain distinct even in large samples unless the exposure mapping
is correctly specified and the network links for the neighborhood are completely sampled.

In our third contribution, we derive asymptotic theory for the OLS estimator and find con-
ditions under which the OLS estimator approximates the estimands. We show that the OLS
estimator is consistent for the sample-level causal estimand, conditionally or unconditionally on
the sampling uncertainty. However, because the sample-level causal estimand generally lacks
causal interpretability, results from OLS estimation should be interpreted with caution. If the
exposure mapping is correctly specified and there is no potential correlation between the true and
observed exposure mappings, the sample-level causal estimand is consistent for the population-
level causal estimand; thus, we can guarantee a clear interpretation of the OLS estimator. We
further derive the estimator’s asymptotic distribution and provide a conservative network het-
eroskedasticity and autocorrelation consistent (HAC) variance estimator.

This paper contributes to the literature on design-based inference in network experiments
(Aronow and Samii, 2017; Leung, 2022; Gao and Ding, 2023; Hoshino and Yanagi, 2024). Previ-
ous works have primarily focused on design-based uncertainty, where treatment assignment is the
only source of randomness and complete network information is assumed to be available without
sampling uncertainty. Additionally, these works have mainly considered IPW estimators, which
allow for direct estimation of causal spillover effects, while the OLS estimator has received less
attention. To focus on IPW estimators, these works typically assume that the exposure mapping
takes discrete values, such as an indicator of whether a unit has at least one treated friend.2

In contrast, this paper considers both design-based and sampling-based uncertainties with an
explicit network collection process, and focuses on the OLS estimator with exposure mappings
as regressors, which is widely used in empirical applications and allows for continuous exposure
mappings.

This paper also relates to the literature on simultaneous design-based and sampling-based
inference (see Abadie, Athey, Imbens and Wooldridge, 2020; Xu and Wooldridge, 2022; Abadie,
Athey, Imbens and Wooldridge, 2023; Viviano, 2024). Our framework extends the approach of
Abadie et al. (2020) to the network setting by allowing for both design-based and sampling-based
uncertainties in network experiments, and by focusing on both population-level and sample-level
estimands. We differ from Abadie et al. (2020) in several important respects. First, we explicitly
model network sampling, where the observed network may be only partially observed. Second,
we study the OLS estimator with exposure mappings as regressors, which induces dependence
among outcomes and between regressors and sampling indicators, features not present in their

2Gao and Ding (2023) discuss the potential application of IPW-based estimators to continuous exposure mappings.
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analysis. Third, we provide an element-wise causal interpretation of the estimands and the OLS
estimator, which is not addressed in their work. Relatedly, Viviano (2024) also considers both
design-based and sampling-based uncertainties, including uncertainty arising from network sam-
pling. However, while his approach assumes that all relevant network information for computing
the true exposure mapping is observed, our framework allows for the possibility that some rele-
vant network information is unobserved due to sampling uncertainty. Additionally, while Viviano
(2024) focuses on a sample-level estimand that maximizes a welfare measure, our study is con-
cerned with inference for both population-level and sample-level causal estimands, emphasizing
the potential divergence between the two.

This paper is also related to the literature studying the impact of network data collection on
parameters of interest (Chandrasekhar and Lewis, 2016; Griffith, 2022; Lewbel, Qu and Tang,
2023; Hsieh, Hsu, Ko, Kovarik and Logan, 2024). While these papers share a similar motivation
in that the network sampling process can affect the estimation of spillover effects, they primarily
focus on the potential bias of estimators with respect to homogeneous parameters due to network
sampling. In contrast, this paper focuses on the causal interpretability of the OLS estimator
with heterogeneous spillover effects. This distinction is important because attenuation bias, as
highlighted for example in Chandrasekhar and Lewis (2016), does not necessarily hinder learning
about spillover effects if the estimator preserves the sign of the underlying effects. However, we
show that the OLS estimator with exposure mappings may not preserve the sign of the true
spillover effects due to contamination bias, potentially leading to misleading conclusions.

More broadly, this paper contributes to the literature on the causal interpretability of es-
timators in linear regressions with heterogeneous treatment effects (Angrist, 1998; Goldsmith-
Pinkham, Hull and Kolesár, 2022; Borusyak and Hull, 2024). In particular, Goldsmith-Pinkham
et al. (2022) show that the OLS estimator with multi-dimensional treatment indicators can be
contaminated in the presence of heterogeneous treatment effects, which aligns with our findings
in Corollary 1. There are two important differences. First, we consider a finite population model,
whereas Goldsmith-Pinkham et al. (2022) focus on an infinite population model, making it non-
trivial to extend their results to our setting. Second, we allow for general exposure mappings
as regressors, while Goldsmith-Pinkham et al. (2022) restrict attention to mutually exclusive
multi-dimensional treatment indicators. In our context, contamination bias arises from overlaps
in the treatment status across elements of the exposure mapping, whereas such overlaps are not
possible in the non-network setup of Goldsmith-Pinkham et al. (2022).

The remainder of this paper is organized as follows. Section 2 introduces the framework for
network sampling, the model, and assumptions. Section 3 presents the main results, including
a causal interpretation and asymptotic theory. Section 4 proposes a network heteroskedasticity
and autocorrelation consistent (HAC) estimator for the standard errors. Section 5 provides a
simulation study to illustrate the finite sample properties of the proposed estimator. Section 6
applies the proposed method to a real-world dataset. Section 7 concludes the paper and provides
a flowchart (Figure 4) outlining recommended steps for conducting inference in network experi-
ments using the OLS estimator. Appendix A discusses how to estimate the nuisance parameters
consistently, Appendix B contains technical lemmas, Appendix C contains proofs, Appendix D
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presents additional simulation results, and Appendix E lists the papers included in the survey of
network experiment research presented in the Introduction.

2. Model

In this section, we first outline our framework for modeling network experiments. We then
introduce the estimands of interest, which are defined both for the entire population and for the
sampled group, as well as the OLS estimator used to estimate these estimands.

2.1. Population. As in Abadie et al. (2020), we consider a sequence of finite populations. There
are finitely many units (n < ∞) in the population, denoted by Nn = {1, ..., n}. These units
are connected through the network represented by an adjacency matrix An = [An,i,j ]i,j∈Nn ∈
{0, 1}n×n. We define An,i,j = 1 if there is a network link between units i and j, and An,i,j = 0

otherwise. We assume that the network is undirected (An,i,j = An,j,i) and has no self-loops
(An,i,i = 0). Each unit i is characterized by a vector of covariates Zn,i ∈ Zn ⊂ RdZ , po-
tential outcomes Y ∗

n,i(·) ∈ Yn ⊂ R that depend on the entire vector of binary treatments
Dn = [Dn,i]i∈Nn ∈ {0, 1}n. We consider the setup where the researcher assigns treatments
only to the sampled units, but spillovers to non-sampled units are allowed. The covariates Zn,i

include both network information (e.g., number of i’s neighbors, degree: degn,i =
∑

j ̸=iAn,i,j)
and individual information (e.g., i’s age). Also, the potential outcomes may violate the Stable
Unit Treatment Value Assumption (SUTVA) by allowing for others’ treatment status as inputs.

2.2. Sampling. From a finite population of n units, we draw a sample of N =
∑n

i=1Rn,i units
(hence n ≥ N), where Rn,i ∈ {0, 1} is the sampling indicator for the i-th unit: Rn,i = 1 if i is in
the sample and otherwise Rn,i = 0. Given the sampling indicator vector Rn, partial elements of
the true network An are sampled. We denote the sampled network, given the sampling indicator
vector Rn, as Ãn(Rn). When the dependence on Rn is clear from context, we simply write Ãn.
The sampled adjacency matrix Ãn = [Ãn,i,j ]i,j∈Nn ∈ {0, 1}n×n has (i, j)-element Ãn,i,j , which
equals one if there is a true network link between units i and j and the link is sampled, and zero
otherwise.

In this paper, we focus on two canonical network sampling methods: (i) induced subgraph sam-
pling, and (ii) star sampling. In the induced subgraph sampling case, we sample Ãn = RnR

′
n⊙An

where ⊙ is the element-wise product and the (i, j)-element of Ãn, Ãn,i,j = Rn,iRn,jAn,i,j rep-
resents a network link between the units i and j, which is sampled if both units are sam-
pled. In the star sampling case, we sample Ãn = (1n1

′
n − (1n −Rn)(1n −Rn)

′) ⊙ An, where
Ãn,i,j = max{Rn,i, Rn,j}An,i,j represents a network link between the units i and j, which is sam-
pled if at least one of the two units is sampled. Sampled networks under induced subgraph and
star sampling are illustrated in Figure 1. In the figure, the sampled units are in blue, and the
non-sampled units are in light gray. The sampled links are shown as solid black lines, and the
non-sampled links as dashed gray lines. In practice, if the researcher asks the sampled units to
list their friends from the list of sampled units, the induced subgraph sampling network is sam-
pled (e.g., Conley and Udry, 2010; Dizon et al., 2020; Carter et al., 2021). If the researcher asks
the sampled units to list their friends from the population, the star sampling network is sampled
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(e.g., Banerjee, Chandrasekhar, Duflo and Jackson, 2013; Cai et al., 2015; Beaman et al., 2021).
See Section 5.3 of Kolaczyk and Csárdi (2014) for further examples of network sampling.

Figure 1. Comparison of induced subgraph sampling (left) and star sampling
(right).

(a) Induced subgraph sampling (b) Star sampling

Note: Blue nodes indicate sampled units, while light gray nodes denote non-sampled units. Solid black links
are observable to the researcher; dashed gray links are unobserved.

We denote the observed covariates by Z̃n,i, which may differ from Zn,i due to network sampling.
For example, if Zn,i includes i’s degree, then Z̃n,i contains i’s degree computed from the sampled
network Ãn: d̃egn,i =

∑
j ̸=i Ãn,i,j . Note that we allow both Zn,i and Z̃n,i to depend on Rn.

Throughout the paper, we maintain the following assumption regarding the sampling process
and the assignment mechanism.

Assumption 1. (i) Random sampling:

Rn,i ∼ Bernoulli(ρn) i.i.d.,

where ρn ∈ (0, 1] is a sequence of sampling probabilities such that ρn → ρ ∈ (0, 1].
(ii) Network sampling: Given a fixed entire network sequence An ∈ {0, 1}n×n, the (i, j)-

element of sampled network Ãn is generated by the induced subgraph sampling Ãn,i,j = Rn,iRn,jAn,i,j

or the star sampling Ãn,i,j = max{Rn,i, Rn,j}An,i,j.
(iii) Treatment assignment mechanism: Let Rn,−i denote the vector Rn excluding the i-th

element, Rn,i. The assignment mechanism Dn,i is independent of Rn,−i and drawn independently
(but not necessarily identically) from a known distribution. The distribution of Dn,i is degenerate
at 0 if and only if Rn,i = 0.
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Assumption 1 (iii) implies Dn,i = 0 if Rn,i = 0, which means we treat only the sampled units.
The simplest example is

Dn,i ∼ Bernoulli(Rn,ipn,i) independently. (1)

While we use the Bernoulli assignment in (1) for all illustrations in the paper, our theoretical
results accommodate more general assignment mechanisms, as specified in Assumption 1 (iii).
Since Assumption 1 (iii) does not require the identical draws, pn,i could depend on An, Zn,i

or other observed characteristics of unit i. We can equivalently write Assumption 1 (iii) as
Dn,i = Rn,iD

∗
n,i, where D∗

n,i is defined as the latent treatment indicator generated by D∗
n,i ∼

Bernoulli(pn,i) (or more general distribution satisfying the assumption) independently. Note
also that the treatment assignment mechanism is known to the researcher, which is satisfied in
a randomized controlled trial and commonly assumed in the design-based inference literature.

Remark 1. Assumption 1 (i) rules out cluster sampling and multi-wave network sampling,
because in such designs Rn,i may depend on Rn,j for some j ̸= i through the cluster or the
network, respectively. Assumption 1 (ii) prohibits censoring of Ãn; when censoring occurs, it
can be treated as misspecification of the exposure mapping (see Example 4). Assumption 1 (iii)
excludes complex assignment schemes, such as matched-pair or blocked randomization. ■

2.3. Potential Outcome. As discussed above, each unit’s potential outcome Y ∗
n,i(·) is a function

of the full treatment vector Dn. By Assumption 1 (iii), we can write Dn = Rn ⊙ D∗
n, where

D∗
n = [D∗

n,i]i∈Nn . Following the literature (e.g., Aronow and Samii, 2017), we assume that there
is an exposure mapping Tn,i ∈ Tn ⊂ RdT that essentially determines i’s potential outcome by
summarizing the network structure and the treatment status vector. See Section 2.4 below for
a detailed definition and discussion on the exposure mapping. We consider a linear potential
outcome model, so that for each t ∈ Tn, Y ∗

n,i(t) is defined as follows.

Assumption 2. For all t ∈ Tn,

Y ∗
n,i(t) = t′θn,i + νn,i,

where θn,i and νn,i are non-stochastic.

Note that θn,i is a vector of heterogeneous treatment effects. Each element θn,i,(k) represents
the marginal effect of the k-th component of the exposure mapping Tn,i on the potential outcome
Y ∗
n,i(t). For example, if the k-th component of Tn,i is the share of treated friends, then θn,i,(k)

captures the causal spillover effect from i’s treated friends on i’s outcome. Since θn,i is non-
stochastic, it may depend on the population network An, allowing for heterogeneity based on
network structure and unit i’s position.

Although a linear model may seem restrictive, when |Tn| is finite (e.g., Tn = {0, 1}2), this
assumption is without loss of generality as discussed in Abadie et al. (2020). The realized
outcome is Yn,i = Y ∗

n,i(Tn,i). Thus, the outcome depends on Dn only via the exposure mapping
Tn,i.
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2.4. Exposure Mapping. Let the true exposure mapping be Tn,i = g(i,Dn,An) ∈ Tn ⊂ RdT ,
where g : Nn ×{0, 1}n ×{0, 1}n×n → Tn is a function that generates the true exposure mapping
for each unit. Specifically, for unit i, it takes (i) i’s index, (ii) the treatment vector Dn, and (iii)
the true network An as inputs, and returns a lower-dimensional vector of summary statistics for
the outcome. For example, applied researchers use the presence of i’s treated friends and the
share of i’s treated friends as the exposure mapping.

This paper allows the researcher to misspecify the functional form of g. For example, if the
researcher uses the presence of treated friends as the exposure mapping, while the true potential
outcome is linear in the share of treated friends, then the exposure mapping is misspecified. We
denote this misspecified exposure mapping function by g̃n : Nn×{0, 1}n×{0, 1}n×n → T̃n, where
T̃n ∈ Rd

T̃ . Note that the dimensions dT and d
T̃

may differ. The functional form g̃n could depend
on the sample size n (as in Example 3), but for notational simplicity, we omit the subscript n.
We assume that dimensions dT and d

T̃
are constants independent of n.

If g̃ = g, then the observed exposure mapping T̃n,i can be written as T̃n,i = g(i,Dn, Ãn). That
is, the only difference between the true exposure mapping and the observed exposure mapping
is the network input, between An and Ãn. More generally, if the researcher misspecifies g as g̃,
then the observed exposure mapping is T̃n,i = g̃(i,Dn, Ãn). In this case, the dimensions dT and
d
T̃

may differ.
Below, we provide some examples of exposure mappings.

Example 1. Suppose that the true exposure mapping is i’s own treatment indicator:

Tn,i = g(i,Dn,An) = Dn,i = Rn,iD
∗
n,i.

Note that the exposure mapping does not depend on the network information, and as long as the
researcher correctly specifies the exposure mapping g = g̃, we have Tn,i = T̃n,i for all i ∈ Nn.

Example 2. Suppose that the true exposure mapping is an indicator of the existence of at least
one treated friend:

Tn,i = g(i,Dn,An) = 1

∑
j ̸=i

An,i,jRn,jD
∗
n,j > 0

 ,

and the researcher correctly specifies the exposure mapping as T̃n,i = g(i,Dn, Ãn). Thus, for the
induced subgraph sampling case (Ãn,i,j = Rn,iRn,jAn,i,j),

T̃n,i = 1

∑
j ̸=i

Rn,iRn,jAn,i,jRn,jD
∗
n,j > 0

 = 1

Rn,i

∑
j ̸=i

An,i,jRn,jD
∗
n,j > 0

 .

Thus, when Rn,i = 1, we have Tn,i = T̃n,i. For the star sampling case (Ãn,i,j = max{Rn,i, Rn,j}An,i,j),

T̃n,i = 1

∑
j ̸=i

max{Rn,i, Rn,j}An,i,jRn,jD
∗
n,j > 0

 = 1

∑
j ̸=i

An,i,jRn,jD
∗
n,j > 0

 ,

and we have Tn,i = T̃n,i for all i ∈ Nn.
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Although the two preceding examples correctly specify the exposure mapping, the subsequent
example fails to do so.

Example 3. Suppose that the true exposure mapping is a vector of a direct treatment, a spillover
treatment through a fraction of treated peers, and their interaction term:

Tn,i = g(i,Dn,An) =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
, Rn,iD

∗
n,i ×

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j

)
.

By convention, we usually set
∑

j ̸=iAn,i,jRn,jD
∗
n,j/

∑
j ̸=iAn,i,j = 0 if

∑
j ̸=iAn,i,j = 0 to negate

the spillover effect. Suppose that the researcher misspecifies g̃ as

T̃n,i = g̃(i,Dn, Ãn) =

Rn,iD
∗
n,i,1

∑
j ̸=i

Ãn,i,jRn,jD
∗
n,j > 0


 .

In this specification, it is evident that g ̸= g̃ because dT > d
T̃
. The misspecified g̃ accounts only

for the direct effect and the spillover effect represented by an indicator of the presence of at least
one treated friend. Consequently, not only do the dimensions differ, but the structures of the
variables capturing spillover effects are also distinct.

2.5. Censored Network. We can also treat censoring on a sampled network as arising from a
misspecified exposure mapping as g̃ can specify which links in a sampled network Ã to be used to
compute the exposure mapping. This is empirically relevant as in practice, some studies impose
a cap on the number of links each sampled unit can report, leading to a discrepancy between
the sampled and censored networks. For example, in Cai et al. (2015), each sampled unit was
asked to report up to five closest friends, which potentially introduces censoring in the observed
network. See also Griffith (2022) for further examples and a detailed discussion of censoring in
network data collection. The following example illustrates how censoring can be framed as a
misspecified exposure mapping:

Example 4. Let g be the same as in Example 2. Suppose that the researcher misspecifies g̃ due
to the censoring as

T̃n,i = g̃(i,Dn, Ãn) = g(i,Dn,Cn(Ãn)⊙ Ãn) = 1

∑
j ̸=i

Cn,i,j(Ãn)Ãn,i,jRn,jD
∗
n,j > 0

 ,

where Cn(Ãn) is the censoring indicator matrix whose (i, j)-element is Cn,i,j(Ãn) ∈ {0, 1}, a
binary variable that indicates whether unit j is censored from i’s perspective. The censoring
indicator can be a random variable, as we allow it to be an unknown function of the sampled
network Ãn. For example, Cn,i,j = 1 when unit i (or j) with Rn,i = 1 (or Rn,j = 1) is asked to
list their five closest friends and j (or i) is one of them.3 In this example, g ̸= g̃ in general and
misspecification occurs due to the censoring.

We distinguish between the sampled network Ãn and the censored network Cn(Ãn)⊙Ãn, and
the discrepancy is framed as the misspecification of the exposure mapping. This framework is

3We can define Cn,i,i(Ãn) arbitrarily because An,i,i = 0.
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useful for separating the sampling effect from the censoring. In the extreme case with ρn = 1, we
sample the entire network Ãn = An, but the censoring still matters as we observe Cn(An)⊙An.
For convenience, we will omit the notational dependence of Cn on Ãn.

The dependence of Cn on Ãn is motivated as follows. In practice, the censored induced
subgraph sampling network is observed if the researcher asks the sampled unit to list a fixed
number of closest friends from the sampled friends. Thus, it usually depends on [Ãn,i,j ]j∈Nn .
The censored star sampling network is observed if the researcher asks i with Rn,i = 1 to list a
fixed number of closest friends from their friends in population [An,i,j ]j∈Nn . Since Ãn,i,j = An,i,j

holds for Rn,i = 1 for the star sampling network, the censoring depends on [Ãn,i,j ]j∈Nn . We
also allow the arbitrary dependence of Cn on other deterministic variables, such as individuals’
preferences regarding their friends, which is a benefit of the design-based framework.

2.6. Estimands and Estimator. To facilitate the introduction of our estimands and OLS
estimator, we first transform the exposure mappings. Recall that the exposure mappings Tn,i
and T̃n,i are random vectors that depend on Rn and Dn, and the covariates Zn,i and Z̃n,i are
random vectors that depend only on Rn. Define

Xn,i = Tn,i − ΛnZn,i, and X̃n,i = T̃n,i − Λ̃nZ̃n,i,

where

Λn =

(
n∑

i=1

E[Tn,iZ ′
n,i]

)(
n∑

i=1

E[Zn,iZ
′
n,i]

)−1

,

and

Λ̃n =

(
n∑

i=1

Rn,iE[T̃n,i|Rn]Z̃
′
n,i

)(
n∑

i=1

Rn,iZ̃n,iZ̃
′
n,i

)−1

.

That is, Xn,i is the population residual of the regression of Tn,i on Zn,i, and X̃n,i is the residual
of the regression of T̃n,i on Z̃n,i using sampled units. Since we know the treatment assignment
distribution with known pn,i and observe Rn, we can calculate E[T̃n,i|Rn] analytically.

Table 1 summarizes the conditional expectation of widely used exposure mappings when the
assignment probability is homogeneous: D∗

n,i ∼ Bernoulli(pn) i.i.d. The table focuses on the
case where the exposure mapping is scalar. The researcher applies it element-wise for multi-
dimensional cases. For the second neighborhood, the expectation can be calculated similarly.
See also Example 10 below for the modification on multi-dimensional cases with the second
neighborhood.

To summarize relevant moments of the data, define the population matrix Ωn and the sample
matrices Q̃n and Ω̃n:

Ωn =
1

n

n∑
i=1

E


 Yn,i

Xn,i

Zn,i


 Yn,i

Xn,i

Zn,i


′ ≡

 ΩY Y
n ΩY X

n ΩY Z
n

ΩXY
n ΩXX

n ΩXZ
n

ΩZY
n ΩZX

n ΩZZ
n

 ,
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Table 1. Conditional Expectation of Exposure Mappings Frequently Used in
Applied Research

Exposure Mapping T̃n,i = g(i,Dn, Ãn) E
[
T̃n,i | Rn

]
Individual Treatment Rn,iD

∗
n,i Rn,ipn

Treated Friends Share
∑

j ̸=i Ãn,i,jRn,jD
∗
n,j∑

j ̸=i Ãn,i,j
pn ×

∑
j ̸=i Ãn,i,jRn,j∑

j ̸=i Ãn,i,j

Treated Friends Number
∑

j ̸=i Ãn,i,jRn,jD
∗
n,j pn ×

∑
j ̸=i Ãn,i,jRn,j

Treated Friends Existence 1
{∑

j ̸=i Ãn,i,jRn,jD
∗
n,j > 0

}
1− (1− pn)

∑
j ̸=i Ãn,i,jRn,j

Note: Assume that Rn,i ∼ Bernoulli(ρn) i.i.d. and D∗
n,i ∼ Bernoulli(pn) i.i.d. By convention, we

usually set
∑

j ̸=i Ãn,i,jRn,jD
∗
n,j/

∑
j ̸=i Ãn,i,j = 0 if

∑
j ̸=i Ãn,i,j = 0.

Q̃n =
1

N

n∑
i=1

Rn,i

 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

≡

 Q̃Y Y
n Q̃Y X

n Q̃Y Z
n

Q̃XY
n Q̃XX

n Q̃XZ
n

Q̃ZY
n Q̃ZX

n Q̃ZZ
n

 ,

and

Ω̃n =
1

N

n∑
i=1

Rn,iE


 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

| Rn

 ≡

 Ω̃Y Y
n Ω̃Y X

n Ω̃Y Z
n

Ω̃XY
n Ω̃XX

n Ω̃XZ
n

Ω̃ZY
n Ω̃ZX

n Ω̃ZZ
n

 .

Note that the expectation for Ωn is taken over Dn and Rn while the conditional expectation for
Ω̃n is taken over Dn conditional on Rn.

Our estimands of interest are(
θcausaln

γcausaln

)
=

(
ΩXX
n ΩXZ

n

ΩZX
n ΩZZ

n

)−1(
ΩXY
n

ΩZY
n

)
, (2)

and (
θcausal,sample
n

γcausal,sample
n

)
=

(
Ω̃XX
n Ω̃XZ

n

Ω̃ZX
n Ω̃ZZ

n

)−1(
Ω̃XY
n

Ω̃ZY
n

)
. (3)

These are causal estimands in the sense specified by Abadie et al. (2020). (θcausaln , γcausaln )′

concerns the population-level causal effects of intervention while (θcausal,sample
n , γcausal,sample

n ) con-
cerns the sample-level causal effects when the sampling is governed by Rn. (θcausaln , γcausaln )′ is a
solution for the population moment condition:

1

n

n∑
i=1

E

[(
Xn,i

Zn,i

)(
Yn,i −X ′

n,iθ
causal
n − Z ′

n,iγ
causal
n

)]
= 0, (4)

and (θcausal,sample
n , γcausal,sample

n ) is a solution for the sample moment condition:

1

N

n∑
i=1

Rn,iE

[(
X̃n,i

Z̃n,i

)(
Yn,i − X̃ ′

n,iθ
causal,sample
n − Z̃ ′

n,iγ
causal,sample
n

)
| Rn

]
= 0. (5)

We study (i) whether the sample-level estimand can be estimated consistently (internal validity),
and, if so, (ii) how closely it approximates the population-level estimand (external validity). We
will also discuss whether each element of these estimands admits a causal interpretation, namely,
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whether each OLS coefficient represents a convex combination of the corresponding heterogeneous
treatment effects, which is not discussed in Abadie et al. (2020).

For the sample-level causal estimand, we consider the ordinary least squares estimator:(
θ̂n

γ̂n

)
=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1(
Q̃XY

n

Q̃ZY
n

)
. (6)

Equivalently, the moment condition is

1

n

n∑
i=1

Rn,i

(
X̃n,i

Z̃n,i

)(
Yn,i − X̃ ′

n,iθ − Z̃ ′
n,iγ
)
= 0. (7)

An alternative approach is to use the inverse probability weighting (IPW) estimator (e.g.,
Leung, 2022; Gao and Ding, 2023). A usual condition for the IPW estimator to work in a network
experimental setting is the individual-level overlapping condition; in our notation, we need to
have P[T̃n,i = t|Rn] ∈ (η, 1 − η) almost surely for all i ∈ Nn and t ∈ Tn for some η ∈ (0, 1/2).
This overlapping condition is difficult to maintain in the network sampling framework. For
example, consider a population of two connected units. Suppose the first unit is sampled, while
the second is not. The exposure mapping is defined as the number of treated neighbors. In this
case, P[T̃n,1 = 1|Rn] = 0, thereby violating the overlapping condition. Also, it is notable that
the IPW estimator typically targets a quantity that differs from our estimands, which are defined
through moment conditions in (4) and (5).

Throughout this section, we have defined the network sampling framework, the exposure map-
ping, and the potential outcome model. We have also defined the population- and sample-level
estimands, which are the solutions to the population and sample moment conditions, respectively.
The next section provides our main theoretical results within this framework.

3. Main Results

In this section, we present the main results of this paper. We first discuss the population-
and sample-level estimands’ causal interpretation, then derive the asymptotic properties of the
OLS estimator for both. Since we have assumed that the sequence of sampling probabilities ρn is
bounded away from 0 (Assumption 1-(i)), it follows that N > 0 a.s. for large enough n (Lemma 4
in the Supplemental Appendix). Thus, there is no additional concern for the degeneracy of the
estimands and the OLS estimator in a large population, relative to the standard design-based
setting with ρn = 1.4

3.1. Interpretability of the Causal Estimands. We impose the following regularity condi-
tions for the causal estimands to be well-defined. These conditions require boundedness of the
outcome, exposure mappings, and covariates, as well as full rank of the exposure mappings and
covariates.

Assumption 3.

4This is why we have a stronger statement than Abadie et al. (2020) who allow ρn → 0 as n → ∞ and use “with
probability approaching 1” instead of “almost surely” in their results. Note that Lemma 4 allows ρn → 0 as long
as ρnn → ∞.
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(i) (Uniform Boundedness): The sequence of potential outcomes Y ∗
n,i(·) is uniformly bounded,

i.e., there exists some constant Y > 0 such that |Y ∗
n,i(t)| ≤ Y < ∞ for all n, i ∈ Nn,

and t ∈ T .
(ii) The sequences of exposure mappings Tn,i and T̃n,i satisfy the following.

(a) (Uniform Boundedness): There exists some constant T such that ∥Tn,i∥, ∥T̃n,i∥ ≤
T <∞ almost surely for all n, i ∈ Nn.

(b) (Variation): (1/n)×
∑

i∈Nn
Var(Tn,i) is invertible and (1/N)×

∑
i∈Nn

Rn,iVar(T̃n,i |
Rn) is almost surely invertible for large enough n.

(iii) The sequences of covariates Zn,i and Z̃n,i satisfy the following.
(a) (Uniform Boundedness): There exists some constant Z such that ∥Zn,i∥, ∥Z̃n,i∥ ≤

Z <∞ almost surely for all n, i ∈ Nn.
(b) (Full Rank): (1/n) ×

∑n
i=1 Zn,iZ

′
n,i is almost surely full-rank for large enough n,

and (1/N)×
∑n

i=1Rn,iZ̃n,iZ̃
′
n,i is almost surely invertible for large enough n.

Assumption 3 (iii) implies that the sequences of residualized exposure mappings Xn,i and X̃n,i

satisfy the following.

(a) (Uniform Boundedness): There exists some constant X such that ∥Xn,i∥, ∥X̃n,i∥ ≤ X <

∞ almost surely for all n, i ∈ Nn.
(b) (Full Rank): (1/n)×

∑
i∈Nn

E[Xn,iX
′
n,i] is invertible and (1/N)×

∑n
i=1Rn,iE[X̃n,iX̃

′
n,i|Rn]

is almost surely invertible for large enough n.

The uniform boundedness of the potential outcomes in Assumption 3 (i) is a standard as-
sumption in the literature (e.g., Gao and Ding, 2023; Leung, 2022). Assumption 3 (ii-a) rules
out some network statistics in a large, dense network (e.g., a diverging degree). Assumption 3
(ii-b) requires that the exposure mappings are not degenerate across the units. For example, in
Example 2, Assumption 3 (ii-b) is violated if the network is empty, An,i,j = 0 for all i, j ∈ Nn,
as 1{

∑
j ̸=iRn,jAn,i,jD

∗
n,j > 0} = 0 for all i ∈ Nn. Assumption 3 (iii-b) does not exclude the

constant term in Zn,i and Z̃n,i. Assumption 3 (ii-b) and (iii-b) are not as restrictive as they seem
since we have N > 0 a.s. for large enough n.

We impose an additional condition on the exposure mapping:

Assumption 4. There exists a sequence of matrices Ln such that

E[Tn,i|Rn] = LnZn,i a.s.

for large enough n. Similarly, there exists a sequence of matrices L̃n measurable with respect to
σ(Rn) such that

E[T̃n,i|Rn] = L̃nZ̃n,i a.s.

for large enough n.

This assumption is fairly weak, as it is automatically satisfied if E[Tn,i|Rn] and E[T̃n,i|Rn] are
included in Zn,i and Z̃n,i, respectively. Typically, in a field experiment, the experimenter knows
the assignment mechanism, so E[T̃n,i|Rn] can be computed either analytically or numerically and
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included as covariates. As the following example shows, in some cases, it is sufficient to include
some network statistics in the covariates to satisfy this assumption.

Example 5. Consider a variant of the exposure mapping in Miguel and Kremer (2004) that
counts the number of treated friends:

Tn,i = g(i,Dn,An) =
∑
j ̸=i

An,i,jRn,jD
∗
n,j .

If there is no censoring, then g̃ = g. The conditional expectations of exposure mappings are de-
rived as E[Tn,i|Rn] =

∑
j ̸=iAn,i,jRn,jpn,j, and E[T̃n,i|Rn] =

∑
j ̸=i Ãn,i,jRn,jpn,j =

∑
j ̸=iAn,i,jRn,jpn,j

for Rn,i = 1. Thus, Assumption 4 holds if the weighted degree
∑

j ̸=iAn,i,jRn,jpn,j is included in
Zn,i and Z̃n,i.

We obtain the following transformations of the estimands in terms of the individual causal
effects θn,i in the linear potential outcome model in Assumption 2:

Theorem 1. Under Assumptions 1 to 4, for large enough n,

θcausaln =

(
n∑

i=1

E[Xn,iX
′
n,i]

)−1 n∑
i=1

E[Xn,iX
′
n,i]θn,i,

and

θcausal,sample
n =

(
n∑

i=1

Rn,iE[X̃n,iX̃
′
n,i|Rn]

)−1 n∑
i=1

Rn,iE[X̃n,iX
′
n,i|Rn]θn,i a.s.

Theorem 1 shows that θcausaln is expressed as a weighted sum of causal effects θn,i induced by
the exposure mapping. On the other hand, θcausal,sample

n is not necessarily a weighted sum of
θn,i because of the difference in Xn,i and X̃n,i in the numerator. Moreover, the dimension of
θcausal,sample
n is d

T̃
, which can be different from dT , the dimension of θn,i.

In the absence of Assumption 4, it is known that the formula in Theorem 1 does not hold
due to the omitted variable bias (OVB). Assumption 4 and Theorem 1 suggest a takeaway for
practitioners: under the linear propensity scores, the researcher can select necessary controls
easily to avoid the OVB.

The linear propensity score assumption Assumption 4 is a weak assumption in design-based
causal inference. This assumption also appears in Abadie et al. (2020) and Borusyak and Hull
(2023). In the latter, the OVB is removed by using the recentered instruments. Theoretically,
including the controls and using the recentered instruments are equivalent, but including the
controls is more frequently used in practice. While Borusyak and Hull (2023) focuses on homo-
geneous treatment effects, this paper allows for heterogeneous treatment effects.

Note that in general, the k-th elements of θcausaln and θcausal,sample
n do not directly correspond

to the causal effect of changes in the k-th element of the exposure mapping on the outcomes. For
example, if the exposure mapping is two-dimensional, we could have the first element of θcausaln

to be negative while the first element of θn,i is positive for all i ∈ Nn if the second element of it
is significantly negative.
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3.2. Causal Interpretation. To provide a causal interpretation for each element θcausaln,(k) and

θcausal,sample
n,(k) , we develop an element-wise version of Theorem 1. To this end, we let Tn,i,(k) denote

the k-th element of Tn,i. Similarly, we write T̃n,i,(k), Xn,i,(k), X̃n,i,(k). For each k, let Un,i,(k) be
the residual when projecting Xn,i,(k) onto the Xn,i,(−k) = (Xn,i,(l))l ̸=k:

Un,i,(k) = Xn,i,(k) −

(
n∑

i=1

E[Xn,i,(k)X
′
n,i,(−k)]

)(
n∑

i=1

E[Xn,i,(−k)X
′
n,i,(−k)]

)−1

Xn,i,(−k).

Similarly, define

Ũn,i,(k) = X̃n,i,(k)−

(
n∑

i=1

Rn,iE[X̃n,i,(k)X̃
′
n,i,(−k)|Rn]

)(
n∑

i=1

Rn,iE[X̃n,i,(−k)X̃
′
n,i,(−k)|Rn]

)−1

X̃n,i,(−k).

Then, we have the following decompositions:

Corollary 1. Under Assumptions 1 to 4, for large enough n,

θcausaln,(k) =

∑n
i=1 E[Un,i,(k)Xn,i,(k)]θn,i,(k)∑n

i=1 E[U2
n,i,(k)]

+

∑n
i=1 E[Un,i,(k)X

′
n,i,(−k)]θn,i,(−k)∑n

i=1 E[U2
n,i,(k)]

(8)

for each k = 1, ..., dT , and

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[Ũn,i,(k)X

′
n,i|Rn]θn,i∑n

i=1Rn,iE[Ũ2
n,i,(k)|Rn]

a.s. (9)

for each k = 1, ..., d
T̃
. Under an additional assumption d

T̃
= dT , we can simplify it into

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[Ũn,i,(k)Xn,i,(k)|Rn]θn,i,(k)∑n

i=1Rn,iE[Ũ2
n,i,(k)|Rn]

+

∑n
i=1Rn,iE[Ũn,i,(k)X

′
n,i,(−k)|Rn]θn,i,(−k)∑n

i=1Rn,iE[Ũ2
n,i,(k)|Rn]

a.s. (10)

for each k = 1, ..., dT .

Corollary 1 shows that θcausaln,(k) and θcausal,sample
n,(k) can be influenced by effects from other elements

θn,i,(l) with l ̸= k. However, the residualization does not eliminate contamination bias, because
the definition of Un,i,(k) and Ũn,i,(k) only implies

n∑
i=1

E[Un,i,(k)X
′
n,i,(−k)] = 0 and

n∑
i=1

Rn,iE[Ũn,i,(k)X
′
n,i,(−k)|Rn] = 0,

respectively. Moreover, E[Un,i,(k)Xn,i,(k)] and E[Ũn,i,(k)Xn,i,(k)|Rn] are not guaranteed to be non-
negative.

Example 6. Suppose the true exposure mapping is the number of treated friends, Tn,i =
∑

j ̸=iAn,i,jRn,jD
∗
n,j,

and that Tn,i takes three possible values 1, 2, or 3. Suppose the researcher misspecifies the exposure
mapping as dummy variables: T̃n,i = (T̃n,i,(1), T̃n,i,(2), T̃n,i,(3)), where T̃n,i,(k) = 1{

∑
j ̸=i Ãn,i,jRn,jD

∗
n,j =

k}. Thus, d
T̃
= 3 > dT = 1. For simplicity, consider star sampling, which provides all network

links in the first neighborhood. Then, T̃n,i,(k) = 1{Tn,i = k}. Equation (9) in Corollary 1 implies
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that the coefficient for T̃n,i,(k) has no contamination term because Xn,i is a scalar in this exam-
ple. However, each element of θcausal,sample

n captures a different weighted sum of θn,i; thus, the
interpretation is unclear.

Remark 2. (i) Assuming d
T̃
= dT requires the researcher to correctly specify the dimension of

the exposure mapping (dT = d
T̃
). However, this assumption allows the researcher to misspecify

the shape of g̃ ̸= g or mismeasure the network.
(ii) Our result for θcausaln is a design-based analogue of Proposition 1 in Goldsmith-Pinkham

et al. (2022). The main differences are that their analysis is model-based and focuses on mutually
exclusive treatment indicators (e.g., K-arms).5,6 In contrast, we allow more flexible treatments,
including network spillovers. Our decomposition for θcausal,sample

n additionally accommodates
both misspecification of the exposure mapping and mismeasurement of the network.

(iii) If the distribution of Tn,i does not depend on i, a result in Corollary 1 can be strengthened
to

θcausaln,(k) =

∑n
i=1 E[Un,i,(k)Xn,i,(k)]θn,i,(k)∑n

i=1 E[U2
n,i,(k)]

for any k. That is, we do not have a contamination bias. However, the weight can be negative.
Moreover, the homogeneous requirement of the treatment variable Tn,i is usually violated in
design-based network experiments since the exposure mapping depends on the network informa-
tion for each i and the population network An is treated as non-random.

(iv) The weight for θcausaln is clearly non-negative if the dimension of the treatment variable
Tn,i is one (dT = 1) because no contamination occurs when dT = 1. This result is consistent
with Borusyak and Hull (2024), but our result in Corollary 1 is more general (dT > 1). ■

3.3. When Can We Avoid the Contamination Bias? The following statement provides
sufficient conditions to avoid contamination bias. Define the conditional covariance for random-
variables W1 and W2 given Rn as Cov(W1,W2|Rn) = E[(W1−E[W1|Rn])(W2−E[W2|Rn])|Rn].

Corollary 2. Assume that Assumptions 1 to 4 and d
T̃
= dT hold. Suppose that E[Cov(Tn,i,(k), Tn,i,(l)|Rn)] =

0 for all i ∈ Nn and for any l ̸= k. Then, for large enough n, there is no contamination bias for
θcausaln,(k) , i.e.,

θcausaln,(k) =

∑n
i=1 E[X2

n,i,(k)]θn,i,(k)∑n
i=1 E[X2

n,i,(k)]

5Mutually exclusive treatments guarantee that each treatment’s own effect receives a non-negative weight.
6Goldsmith-Pinkham et al. (2022) propose three approaches to eliminate contamination bias, but all require
modeling the conditional expectation of heterogeneous treatment effects based on observed covariates. In a
design-based setting with deterministic treatment effects θn,i, such modeling is not appropriate. Even if the
modeling assumption is justified, their methods may be unreliable for network experiments due to weak overlap
in propensity scores, which is often violated for common exposure mappings.
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for each k = 1, ..., dT . Suppose that Cov(T̃n,i,(k), Tn,i,(l)|Rn) = 0 for all i ∈ Nn with Rn,i = 1 and
for any l ̸= k. Then, for large enough n, there is no contamination bias for θcausal,sample

n,(k) , i.e.,

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]θn,i,(k)∑n

i=1Rn,iE[X̃2
n,i,(k)|Rn]

a.s.

for each k = 1, ..., dT .
The weights of θcausaln,(k) for θn,i,(k) are always non-negative. If we further assume that Cov(T̃n,i,(k), Tn,i,(k)|Rn) ≥

0 a.s. for all i ∈ Nn with Rn,i = 1 and for all k = 1, ..., dT , then the weights of θcausal,sample
n,(k) for

θn,i,(k) are non-negative, i.e.,

Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]∑n
i=1Rn,iE[X̃2

n,i,(k)|Rn]
≥ 0 a.s.

for all i ∈ Nn and each k = 1, ..., dT .

The zero conditional covariance assumption is satisfied if elements of Tn,i and T̃n,i are mutually
independent. The positive conditional covariance assumption is satisfied under the censored
network (see Example 7 below).

Remark 3. Under homogeneous treatment effects θn,i = θn, we have θcausaln = θn, but

θcausal,sample
n = θn −

(
n∑

i=1

Rn,iE[X̃n,iX̃
′
n,i|Rn]

)−1 n∑
i=1

Rn,iE[X̃n,i(Xn,i − X̃n,i)
′|Rn]θn.

Thus, θcausaln does not have contamination bias for homogeneous treatment effects, but θcausal,sample
n

does. Under homogeneous treatment effects andXn,i = X̃n,i, we have θcausaln = θcausal,sample
n = θn.

■

Example 7. Consider the exposure mapping in Example 4. The misspecified exposure mapping
is T̃n,i = g̃(i,Dn, Ãn) = 1

{∑
j ̸=iCn,i,jÃn,i,jRn,jD

∗
n,j > 0

}
. Assume that D∗

n,i ∼ Bernoulli(pn)

for i = 1, . . . , n independently. By adapting Corollary 2, θcausal,sample
n is a convex combination of

θn,i. Indeed, we can calculate

θcausal,sample
n =

∑n
i=1Rn,i

(
1− (1− pn)

∑
j ̸=i Cn,i,jÃn,i,jRn,j

)
θn,i,(1)∑n

i=1Rn,i

(
1− (1− pn)

∑
j ̸=i Cn,i,jÃn,i,jRn,j

) ,

and the weights are non-negative. In general, if both mappings T̃n,i,(k) and Tn,i,(k) are weakly
increasing (or both weakly decreasing) in {D∗

n,i}i∈Nn, then the weights are non-negative. Thus,
censoring does not cause negative weight problems when g is weakly monotone on {D∗

n,i}i∈Nn for
the first neighborhood exposure mapping.

3.4. More Examples.

Example 8. Consider a general form of exposure mapping. For some function q : R2 → R, let
Tn,i = (Rn,iD

∗
n,i, q(

∑
j ̸=iAn,i,jRn,jD

∗
n,j ,
∑

j ̸=iAn,i,jRn,j)) and T̃n,i = (Rn,iD
∗
n,i, q(

∑
j ̸=i Ãn,i,jRn,jD

∗
n,j ,
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j ̸=i Ãn,i,jRn,j)). For example, the share of treated friends is covered by the following q:

q

∑
j ̸=i

An,i,jRn,jD
∗
n,j ,
∑
j ̸=i

An,i,jRn,j

 =

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,jRn,j
.

It also covers the indicator function as in Example 2. Since D∗
n,i ⊥⊥ D∗

n,j, this satisfies the no-
correlation conditions. If q is non-decreasing with respect to the first argument, then T̃n,i and Tn,i
are positively correlated, giving θcausal,sample

n a clear causal interpretation. This type of exposure
mapping is used in Cai et al. (2015) and Carter et al. (2021). As we illustrated above in the
special case, the censoring T̃n,i = (Rn,iD

∗
n,i, q(

∑
j ̸=iCn,i,jÃn,i,jRn,jD

∗
n,j ,
∑

j ̸=iCn,i,jÃn,i,jRn,j))

does not cause negative weight problems since the exposure mapping g is weakly monotone on
{D∗

n,i}i∈Nn.

Example 9. Let Tn,i = (Rn,iD
∗
n,iGn,i, Rn,iD

∗
n,i(1 − Gn,i), (1 − Rn,iD

∗
n,i)Gn,i), where Gn,i =

1{
∑

j ̸=iAn,i,jRn,jD
∗
n,j > 0}. The exposure mapping categorizes each unit i into one of three

mutually exclusive exposure types, based on their own treatment status and the presence of treated
friends.7 The elements are mutually exclusive but dependent, so the no-correlation conditions are
violated, and we have a contamination bias. This exposure mapping is used in Aronow and Samii
(2017). For the exposure mapping with dependence among its elements, we recommend using the
inverse propensity score weighting (IPW) estimators to avoid contamination bias.

Remark 4. (Comparison with IPW estimators) The causal estimand for the IPW estimators
is the average treatment effect (ATE), (1/n)

∑n
i=1 Y

∗
n,i(t) for each t. In other words, the IPW

estimator and the regression estimator are for different causal estimands. While the IPW esti-
mator works well for cases like Example 9, it is not suitable for cases like Example 10 because the
overlapping condition of the propensity score is easily violated. For example, suppose that Tn,i
is the treated friends share (

∑
j ̸=iAn,i,jRn,jD

∗
n,j)/(

∑
j ̸=iAn,i,j), and there are two units having

three and two friends in the population network, respectively. The former can take Tn,i = 1/3

with positive probability, but the latter never takes the value. Thus, the overlapping condition
fails to hold. Moreover, the overlapping condition can be violated in the sampled network even
if it is satisfied in the population network, since the sampled network is a sub-network of the
population one.

The choice between the IPW estimator and the regression should be decided by the exposure
mapping formula that the researcher wants to use. We recommend using the IPW estimators to
avoid contamination bias when the overlapping condition is satisfied. On the other hand, if there
is any doubt about the overlapping condition or the exposure mapping takes (nearly) continuous
values, we suggest using the regression model since it does not require the overlapping condition.
We leave a more detailed comparison between the IPW estimator and the OLS estimator for
future research. ■

7The slope of the OLS estimator captures the effect associated with the group of units that are untreated and
have no treated friends.
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Example 10. Consider an exposure mapping

Tn,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
,

∑
j ̸=i

∑
k ̸=i,j An,i,jAn,j,kRn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j An,i,jAn,j,k

)
,

where the first element indicates whether unit i is directly treated or not, the second element
captures the treated friends share among i’s first neighbors, and the third element captures the
treated friends share among i’s second neighbors. There are overlaps in Dn in the second and
third elements if there are triangles in the network, so no-correlation conditions are generally
violated. Figure 3a shows an example of a network with triangles. The second element of Tn,i
is the average of the neighbors’ treatment status including Dn,i1 and Dn,i2 . The third element is
the average of the first neighbors’ treatment status, including Dn,i1 and Dn,i2, again. Thus, the
second and third elements are correlated. This setting is employed in Cai et al. (2015). An easy
way to avoid contamination bias is to modify the exposure mapping g to eliminate the double
counting. For example, we can use

Tn,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
,

∑
j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)

)
, (11)

instead. Although we miss some of the second-order links, we still manage to avoid the double
counting and hence contamination bias.

Figure 3. Networks with triangle links

i i1

i2

(a) Without censored links

i i1

i2

(b) With censored (dashed) links

Example 11. Consider the setup in Example 10 but with censoring caused by naming up to four
friends. As illustrated in Figure 3b, suppose that the sampled network link between i1 and i2 is
not observed due to the censoring. Then, i2 is misclassified as a second neighborhood friend in
the observed network while i2 is a first neighborhood friend in the population network. Thus, if
we consider the true exposure mapping Tn,i as in (11), and a misspecified exposure mapping for
the sampled network

T̃n,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iCn,i,jÃn,i,jRn,jD

∗
n,j∑

j ̸=iCn,i,jÃn,i,j

,

∑
j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)

)
,

then, there is a correlation between Tn,i,(2) and T̃n,i,(3). An easy way to avoid contamination
bias is to modify the exposure mapping g̃ so that T̃n,i,(3) equals zero for individuals subject to
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censoring. For example, if the censoring happens by asking up to four friends, we can eliminate
the individuals with four observed links from consideration

T̃n,i,(3) =

∑
j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j Cn,i,jÃn,i,jCn,j,kÃn,j,k(1− Cn,i,kÃn,i,k)

1

∑
j ̸=i

Cn,i,jÃn,i,j < 4

 .

Note that the censoring for i does not matter for the first neighborhood element T̃n,i,(2) by the same
logic as Example 8. Moreover, the censoring for i1 does not matter for the second neighborhood
element T̃n,i,(3) of i because it does not introduce any misclassification.

3.5. Asymptotic Theory. We mostly follow the notation of Kojevnikov, Marmer and Song
(2021). Let Nn = {1, ..., n} be the set of population units and dn(i, j) be the shortest distance
between i, j ∈ Nn on An (set dn(i, i) = 0; set dn(i, j) = ∞ if there are no paths between i and
j). Define Lv = {Lv,a : a ∈ N}, where Lv,a = {f : Rv×a → R : ∥f∥∞ < ∞,Lip(f) < ∞}, ∥ · ∥∞
is the sup-norm, and Lip(f) is the Lipschitz constant of f . Let Pn(a, b; s) = {(A,B) : A,B ⊂
Nn, |A| = a, |B| = b, dn(A,B) ≥ s}, where dn(A,B) = mini∈Aminj∈B dn(i, j). For each A ⊂ Nn

and triangular array (Un,i), let us write Un,A = (Un,i)i∈A.

Definition 1. A triangular array {Un,i}, n ≥ 1, Un,i ∈ Rv, is called conditionally ψ-dependent
given Rn, if for each n ∈ N, there exists a σ(Rn)-measurable sequence ξn = {ξn,s}s≥0, ξn,0 = 1,
and a collection of nonrandom functions (ψa,b)a,b∈N, ψa,b : Lv,a × Lv,b → [0,∞) such that for all
(A,B) ∈ Pn(a, b; s) with s > 0 and all f ∈ Lv,a and g ∈ Lv,b,

|Cov(f(Un,A), g(Un,B))| ≤ ψa,b(f, g)ξn,s a.s.

Define

Nn(i; s) = {j ∈ Nn : dn(i, j) ≤ s},

which is the set of i’s neighborhood within s-distance. First, we assume that the network
dependence of the exposure mappings is local.

Assumption 5. There exists some K ∈ N such that for any i ∈ Nn, n ∈ N and dn,d
′
n ∈ {0, 1}n

such that dn,Nn(i,K) = d′
n,Nn(i,K),

g(i,dn,An) = g(i,d′
n,An), and g̃(i,dn, Ãn) = g̃(i,d′

n, Ãn) a.s.

Let d̃n(i, j) be the shortest distance between i, j ∈ Nn on Ãn. Assumptions 1 and 5 imply
that Tn,i ⊥⊥ Tn,j if dn(i, j) > 2K. They also imply that T̃n,i ⊥⊥ T̃n,j if dn(i, j) > 2K because
d̃n(i, j) ≥ dn(i, j) almost surely and because i and j do not share Rn,k and D∗

n,k for any k ̸= i, j

in their K-neighborhoods.
Under the correctly specified exposure mapping, g = g̃, the condition g(i,dn,An) = g(i,d′

n,An)

automatically implies g̃(i,dn, Ãn) = g̃(i,d′
n, Ãn) a.s. because the distance on a sampled network

is always weakly longer than that on the population network: d̃n(i, j) ≥ dn(i, j). For the same
reason, the distance on a censored network is always weakly longer than that on sampled or
population networks.
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Define N ∂
n (i; s) = {j ∈ Nn : dn(i, j) = s}, which is the set of i’s neighborhood with exact

s-distance, and its p-th sample moment δ∂n(s; p) = n−1
∑

i∈Nn
|N ∂

n (i; s)|p. The next assumption
requires that the sum of these p-th sample moments within 2K-distance is bounded.

Assumption 6. The sequence of networks (An) satisfies∑
1≤s≤2K

δ∂n(s; 1) = O(1).

By a simple calculation and ρ > 0, we can show that Assumption 6 is equivalent to (nρn)
−1
∑n

i=1∑
j∈Nn(i;2K) 1 = O(1). Also note that Assumption 6 is weaker than the bounded network degree

since this assumption only requires the boundedness on average.
Then, we show that our estimator is consistent for the sample-level causal estimand:

Theorem 2. Under Assumptions 1 to 6,

θ̂n − θcausal,sample
n

pR−→ 0 and θ̂n − θcausal,sample
n

p→ 0,

where pR−→ denotes convergence in probability conditional on Rn, that is, for any ε > 0,

P
(
∥θ̂n − θcausal,sample

n ∥ ≤ ε | Rn

)
a.s.−→ 1

as n→ ∞.

Theorem 2 establishes the internal validity of our network experiment. However, in general,
θ̂n − θcausaln ̸ p→ 0 because θcausaln − θcausal,sample

n ̸ p→ 0 due to misspecification of the exposure map-
ping. Moreover, as shown in Corollary 1, θcausal,sample

n does not have a clear causal interpretation.
Consequently, Theorem 2 does not guarantee the external validity of our network experiment.

Ideally, our network experiment would satisfy θ̂n − θcausaln
p→ 0 so that each element of θ̂n can

be interpreted as a causal spillover effect. We show that this consistency is achieved when there
is no misspecification and no mismeasurement (T̃n,i = Tn,i for each i ∈ Nn) and the observed
covariates coincide with those in the population (Z̃n,i = Zn,i for each i ∈ Nn). We are essentially
assuming that each T̃n,i is computed by g(i,Dn,An) = Tn,i where we replace g̃ with g and Ãn

with An. Under the linear propensity scores, we can show that Xn,i = X̃n,i a.s. (Lemma 7).

Assumption 7.

(i) We have the following equalities almost surely for Rn,i = 1: T̃n,i = Tn,i and Z̃n,i = Zn,i

for all i ∈ Nn and n ∈ N.
(ii) Each element of Tn,i and Zn,i either does not depend on Rn,i, or depends on it only

through a multiplicative form.
(iii) At most one element of Tn,i depends on i’s own treatment Rn,iD

∗
n,i and the element does

not depend on Rn,j and Dn,j for any j ̸= i.

Assumption 7 (i) holds when there is no misspecification and no mismeasurement for sampled
units, i.e., g = g̃ and Ãn = An locally. For example, under star sampling with an exposure
mapping restricted to the first neighborhood, all relevant links are correctly observed for sam-
pled units. However, Assumption 7 (i) may not hold for exposure mappings with higher-order
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dependence, since more global measurement of the network is then required up to the relevant
order. Nonetheless, in such cases, researchers can apply our results to θcausal,sample

n instead of
θcausaln and interpret it as a convex combination of heterogeneous treatment effects. Assumption 7
(ii) means some components of the covariate vector are independent of the sampling indicator,
while others incorporate Rn,i in a multiplicative way—for example, Zn,i,(k) = Rn,ipn,i. We can
always pick covariates Zn,i having Assumption 7 (ii) since Rn,i enters only multiplicatively for
Tn,i by Assumption 1 if we include the direct effect without any transformation. Thus, we can
choose covariates Zn,i satisfying Assumption 7 and Assumption 4 simultaneously. Assumption 7
(iii) is satisfied if we do not include the cross term of the direct effect Rn,iD

∗
n,i and a spillover

effect. Excluding the cross term is also used to guarantee no contamination (Corollary 2).8

Under Assumption 7, we can show the consistency of the OLS estimator θ̂n for the population-
level causal estimand θcausaln :

Theorem 3. Under Assumptions 1 to 7,

θ̂n − θcausaln
p→ 0.

It is worth noting that Theorem 3 does not hold if Z̃n,i ̸= Zn,i, since we cannot ensure
X̃n,i ∼ Xn,i asymptotically. Instead, under no misspecification, Corollary 1 implies

θcausal,sample
n,(k) =

∑n
i=1Rn,iE[Ũ2

n,i,(k)|Rn]θn,i∑n
i=1Rn,iE[Ũ2

n,i,(k)|Rn]

for each k = 1, ..., d
T̃
. Thus, although the consistency for θcausaln may fail in this setting, the

absence of misspecification alone recovers the causal interpretability of θcausal,sample
n , and by

extension, that of θ̂n.
Next, we consider the asymptotic distribution of θ̂n. Now, we introduce additional dependence

measures of the network. Define ∆n(s,m; k) = 1
n

∑
i∈Nn

maxj∈N ∂
n (i;s) |Nn(i;m) \ Nn(j; s− 1)|k,

and cn(s,m; k) = infα>1[∆n(s,m; kα)]1/α
[
δ∂n

(
s; α

α−1

)]1−1/α
. cn(s,m; k) measures the density

of the network and is used as a sufficient condition for the CLT.
Define

ε̃n,i = Yn,i − X̃ ′
n,iθ

causal,sample
n − Z̃ ′

n,iγ
causal,sample
n ,

εn,i = Yn,i −X ′
n,iθ

causal
n − Z ′

n,iγ
causal
n ,

and

Σ̃n = Var

(
n∑

i=1

Rn,iX̃n,iε̃n,i | Rn

)
, Σn = Var

(
n∑

i=1

Rn,iXn,iεn,i

)
.

We impose the following assumption, which requires a weak dependence structure in the
network and rules out overly dense networks.

8We can allow the violation of Assumption 7 (iii) if we modify θ̂n in the same manner as γ̃n in Appendix A.
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Assumption 8. There exists a positive sequence mn → ∞ such that for p = 1, 2,

nΣ̃−(1+p/2)
n

2K∑
s=0

cn(s,mn; p)
a.s.−→ 0, nΣ−(1+p/2)

n

2K∑
s=0

cn(s,mn; p) → 0.

Then, we show that θ̂n is asymptotically normal relative to θcausal,sample
n :

Theorem 4. Under Assumptions 1 to 6 and 8,

Σ̃−1/2
n Q̃XX

n (θ̂n − θcausal,sample
n )

dR−→ N(0, Id
T̃
) and Σ̃−1/2

n Q̃XX
n (θ̂n − θcausal,sample

n )
d→ N(0, Id

T̃
),

where dR→ denotes convergence in distribution conditional on Rn, that is,∣∣∣P(Σ̃−1/2
n Q̃XX

n (θ̂n − θcausal,sample
n ) ≤ t | Rn

)
− F (t)

∣∣∣ a.s.−→ 0

as n→ ∞ for any t ∈ Rd
T̃ letting F (t) be the distribution function of N(0, Id

T̃
).

We also show that the absence of misspecification and access to the variables in the population
yield asymptotic normality of θ̂n relative to θcausaln :

Theorem 5. Under Assumptions 1 to 8, we have

Σ−1/2
n Q̃XX

n (θ̂n − θcausaln )
d→ N(0, IdT ).

Remark 5. When we have a homogeneous effect θn,i = θn, we have θcausal,sample
n = θcausaln a.s.

for large enough n under Xn,i = X̃n,i. Hence, we can use the same asymptotic distribution
among them. ■

4. Variance Estimation

In this section, we provide a conservative network heteroskedasticity- and autocorrelation-
consistent (HAC) variance estimator for θ̂n. Note that even when treatments and samples are
randomly assigned and drawn, dependence can persist within a 2K-neighborhood because ex-
posure mappings Tn,i may share elements of Dn and Rn. As a result, the variance estimator
must account for this local dependence structure. However, for any pair i, j with dn(i, j) > 2K,
the exposure mappings Tn,i and Tn,j are independent. When the exposure mapping is correctly
specified (g̃ = g), the researcher can directly choose a finite K based on the functional form.
If there is potential misspecification in g̃, K should be selected conservatively, reflecting the
maximum range over which the exposure mapping may induce dependence.

Define

Ñn(i; s) = {j ∈ Nn : d̃n(i, j) ≤ s},

which is the set of i’s neighborhood within s-distance on a sampled network Ãn. Note that
Ñn(i; s) is a random set because d̃n(i, j) is a random variable depending on Rn. On the other
hand, dn(i, j) and Nn(i; s) are non-random. Recall that we also have d̃n(i, j) ≥ dn(i, j) a.s., thus,
Ñn(i; s) ⊆ Nn(i; s) a.s.

Let

ε̂n,i = Yn,i − X̃ ′
n,iθ̂n − Z̃ ′

n,iγ̃n,
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Ψn,i = Xn,iεn,i, Ψ̃n,i = X̃n,iε̃n,i, and Ψ̂n,i = X̃n,iε̂n,i, where we define γ̃n later in Theo-
rems 6 and 7. By orthogonality conditions,

∑n
i=1 E [Ψn,i] = 0,

∑n
i=1Rn,iE

[
Ψ̃n,i | Rn

]
= 0,

and
∑n

i=1Rn,iΨ̂n,i = 0.
Then, the variances of interest can be written as

1

nρn
Σ̃n =Var

(
1

√
nρn

n∑
i=1

Rn,iX̃n,iε̃n,i | Rn

)

=
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jE
[(

Ψ̃n,i − E
[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
| Rn

]
,

and

1

nρn
Σn =Var

(
1

√
nρn

n∑
i=1

Rn,iXn,iεn,i

)

=
1

nρn

n∑
i=1

∑
j∈Nn(i,2K)

E
[
(Rn,iΨn,i − ρnE [Ψn,i]) (Rn,jΨn,j − ρnE [Ψn,j ])

′] .
We consider the following feasible estimator:

1

N
Σ̂n =

1

N

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jΨ̂n,iΨ̂
′
n,j .

To show the consistency of the variance estimator, we assume an additional sparsity condition.
The assumption requires a few more notations. Let δn(s; p) be the p-th sample moment of the set
of i’s neighborhood within s-distance: δn(s; p) = n−1

∑n
i=1 |Nn(i; s)|p. We also define Jn(s,m)

as the set of quadruples (i, j, i′, j′) such that i′ and j′ are m-neighbors of i and j, respectively,
and the distance between i and j is exactly s:

Jn(s,m) =
{
(i, j, i′, j′) ∈ N 4

n : i′ ∈ Nn(i,m), j′ ∈ Nn(j,m), dn(i, j) = s
}
.

Assumption 9. (i) δn(2K; 2) = o(n). (ii)
∑2K

s=0 |Jn(s, 2K)| = o(n2).

Assumption 9 is a version of Assumptions 7c and 7d of Leung (2022). This assumption is
satisfied if network links are not too dense.

Theorem 6. Let γ̃n = γ̂n. Under Assumptions 1 to 6, 8 and 9, we have

1

N
Σ̂n =

1

nρn
Σ̃n + B̃n + opR(1),

where Un = opR(1) means Un
pR−→ 0, and

B̃n =
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′
.

Let γ̃n = γcausaln + op(1). If, in addition, we assume Assumption 7 and d̃n(i, j) = dn(i, j) a.s.
for all (i, j) ∈ N 2

n with Rn,i = 1 and Rn,j = 1 and for all n ∈ N, then,
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1

N
Σ̂n =

1

nρn
Σn + B̂n + op(1),

where

B̂n =
1

n

n∑
i=1

∑
j∈Nn(i,2K)

ρnE [Ψn,i]E [Ψn,j ]
′ .

An estimator satisfying γ̃n = γcausaln + op(1) is given in Appendix A. In general, γ̂n ̸= γcausaln +

op(1), and we need a modification on γ̂n. The condition d̃n(i, j) = dn(i, j) a.s. for units with
Rn,i = 1 and Rn,j = 1 is satisfied, for example, when the network is sampled using star sampling
and the exposure mapping is restricted to the first neighborhood.

Theorem 6 implies that we can only estimate the variance up to the ones with bias terms B̃n

and B̂n since there is no hope to estimate each heterogeneous expectation consistently. This bias
is inevitable in heterogeneous treatment effect settings (Abadie et al., 2020; Leung, 2020; Gao
and Ding, 2023). Combining this convergence and the asymptotic normality, we can estimate
the variance of θ̂n by (

Q̃XX
n

)−1
(

1

N
Σ̂n

)(
Q̃XX

n

)−1
. (12)

The above variance estimator has a problem because we cannot guarantee conservativeness.
Indeed, bias matrices B̂n and B̃n are not necessarily positive semi-definite.9 Conservative guar-
antee modification is possible. We can write (1/N)Σ̂n = (1/N)R̂Ψ

′
nK̃nR̂Ψn, where

R̂Ψn =
(
Rn,1X̃n,1ε̂n,1, · · · , Rn,nX̃n,nε̂n,n

)′
,

K̃n = [1{d̃n(i, j) ≤ 2K}]i,j .

Eigendecomposition gives K̃n = QnΞnQ′
n. By replacing K̃n by K̃+

n = Qnmax{0,Ξn}Q′
n (max

is taken element-wise), the variance matrix estimator

1

N
Σ̂+
n =

1

N
R̂Ψ

′
nK̃

+
n R̂Ψn =

1

N

n∑
i=1

n∑
j=1

Rn,iRn,jΨ̂n,iΨ̂
′
n,jK̃

+
n,i,j .

becomes positive semi-definite. We also have K̃−
n = Qn|min{0,Ξn}|Q′

n = K̃+
n − K̃n. This

modification is provided by Gao and Ding (2023). The modified variance estimator is given by(
Q̃XX

n

)−1
(

1

N
Σ̂+
n

)(
Q̃XX

n

)−1
. (13)

Define Kn = [1{dn(i, j) ≤ 2K}]i,j , and define K+
n and K−

n in a similar manner to K̃+
n and

K̃−
n . Define

δ̃−n (2K; p) =
1

n

n∑
i=1

 n∑
j=1

|K̃−
n,i,j |

p

, δ−n (2K; p) =
1

n

n∑
i=1

 n∑
j=1

|K−
n,i,j |

p

,

9Alternatively, we can implement the randomized inference as Borusyak and Hull (2023). For multidimensional
θ̂n, the randomized inference do not guarantee conservativeness, too.
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and

|J̃ −
n (s, 2K)| =

n∑
i=1

n∑
j=1

1{dn(i, j) = s}

(
n∑

i′=1

|K̃−
n,i,i′ |

) n∑
j′=1

|K̃−
n,j,j′ |

 ,

|J −
n (s, 2K)| =

n∑
i=1

n∑
j=1

1{dn(i, j) = s}

(
n∑

i′=1

|K−
n,i,i′ |

) n∑
j′=1

|K−
n,j,j′ |

 .

Assumption 10. (i) δ̃−n (2K; 1) = Oa.s.(1) and δ−n (2K; 1) = O(1). (ii) δ̃−n (2K; 2) = Oa.s.(n)

and δ−n (2K; 2) = O(n). (iii)
∑2K

s=0 |J̃ −
n (s, 2K)| = Oa.s.(n

2) and
∑2K

s=0 |J −
n (s, 2K)| = O(n2).

Assumption 10 is a version of Assumptions 7b-7d of Gao and Ding (2023). The assumption is
a modified version of Assumption 9 for the eigenvalue modification.

Theorem 7. Let γ̃n = γ̂n. Under Assumptions 1 to 6, 8 and 10, we have

1

N
Σ̂+
n =

1

nρn
Σ̃n + B̃+

n + oRp (1),

where

B̃+
n =

1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′
K̃+

n,i,j

+
1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[(

Ψ̃n,i − E
[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
| Rn

]
K̃−

n,i,j

Let γ̃n = γcausaln + op(1). If, in addition, we assume Assumption 7 and d̃n(i, j) = dn(i, j) a.s.
for all (i, j) ∈ N 2

n with Rn,i = 1 and Rn,j = 1 and for all n ∈ N, then,

1

N
Σ̂+
n =

1

nρn
Σn + B̂+

n + op(1),

where

B̂+
n =

1

n

n∑
i=1

n∑
j=1

ρnE [Ψn,i]E [Ψn,j ]
′K+

n,i,j

+
1

nρn

n∑
i=1

n∑
j=1

E
[
(Rn,iΨn,i − ρnE [Ψn,i]) (Rn,jΨn,j − ρnE [Ψn,j ])

′]K−
n,i,j .

5. Simulation

In this section, we conduct a simulation exercise to illustrate the potential severity of con-
tamination bias. We focus on a case where Tn,i ̸= T̃n,i and contamination bias can arise. See
Appendix D for results when Tn,i = T̃n,i, where no contamination bias occurs and our inference
procedure is valid under correct model specification.

In the following exercise, we use network link information from Banerjee et al. (2013) to sim-
ulate variables based on a real-world network structure, rather than on an artificially generated
population network. That study conducted a network survey among randomly selected respon-
dents across 75 villages in rural southern India, where respondents were asked to name 5 to 8
contacts across 12 interaction dimensions (e.g., house visits, borrowing goods). We focus on the
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borrowing network among individuals, specifically whether a person borrows rice or kerosene
from others.10 To illustrate the applicability of our framework to a single large network without
relying on many clusters, we focus on the largest village and use its borrowing network as the
population network An. Basic network statistics for this village are presented in Table 2:

Table 2. Network Information

Nodes Edges Mean Degree Mean 2nd Order Degree
1770 5556 6.28 11.44

Notes: Nodes reports the number of individuals in the village; Edges reports the number of
links based on borrowing relationships; Mean Degree reports the mean degree; Mean 2nd
Order Degree reports the mean count of friends-of-friends not directly connected to node i.

In this exercise, we consider a scenario in which the true and observed exposure mappings
differ. The main objective is to quantify the severity of contamination bias. Specifically, we
focus on a case where there is no contamination bias at the population level, but bias can arise
due to the choice of g̃. We specify the exposure mapping as in Example 10:

Tn,i =

(
Rn,iD

∗
n,i,

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
,

∑
j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j An,i,jAn,j,k(1−An,i,k)

)
=: (Dn,i, netn,i,weakn,i),

and T̃n,i is the same as Tn,i except that its second and third elements are replaced by

ñetn,i =

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iRn,jAn,i,j
; w̃eakn,i =

∑
j ̸=i

∑
k ̸=i,j Rn,jAn,i,jAn,j,k(1−An,i,k)Rn,kD

∗
n,k∑

j ̸=i

∑
k ̸=i,j Rn,jAn,i,jRn,kAn,j,k(1−An,i,k)

.

For comparison, we also consider T̃ overlap
n,i , which is the same as T̃n,i except that each 1 − An,i,k

in w̃eakn,i is replaced by 1. As discussed in Example 10, due to overlaps in the second and third
elements, the sample-level causal estimand based on T̃ overlap

n,i will be contaminated. In contrast,
the estimands based on Tn,i and T̃n,i are not, as they are free of such overlaps and correlations.

We implement the following simulation design. First, we set individual-specific parameters as
θn,i,(1) ∼ Exponential(1/3) i.i.d., θn,i,(2) =Mn,i, θn,i,(3) = 0, and νn,i ∼ N(0, 2) i.i.d., where Mn,i

is a clustering coefficient given by Mn,i = (100/n) ×
∑

k ̸=i

(∑
j ̸=i,k An,i,jAn,j,k

)2
. Specifically,

we draw these θn,i and νn,i once and treat them as fixed for each Monte Carlo iteration to sim-
ulate design-based and sampling-based uncertainties. We choose θn,i,(2) = Mn,i to mechanically
maximize contamination bias, as Mn,i correlates with the contamination weights appearing in
Corollary 1. The average spillover effect from netn,i (i.e., the average of Mn,i) is about 1/2. We
also set θn,i,(3) = 0 for all i, so any deviation from 0 can be interpreted as contamination bias.
Given the fixed population adjacency matrix An from Banerjee et al. (2013), we can calculate
the population-based causal estimand θcausaln .

Next, for each iteration, we draw D∗
n,i ∼ Bernoulli(0.5) i.i.d., and Rn,i ∼ Bernoulli(ρn) i.i.d.

for varying sampling probabilities ρn ∈ {0.1, 0.5, 1.0} to see the impact of sampling uncertainty

10Banerjee et al. (2013) also collected household-level network data; we use individual-level network data, which
is sparser than the household-level networks.
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on inference. For each realization of Rn, we compute θcausal,sample
n . Subsequently, using each

realization of Rn and Dn, we estimate θ̂n from the regression Yn,i ∼ X̃n,i + Z̃n,i, where Z̃n,i =

(Rn,ipn, pn1{
∑

j ̸=iRn,jAn,i,j > 0}, pn1{
∑

j ̸=i

∑
k ̸=i,j Rn,jAn,i,jRn,kAn,j,k(1 − An,i,k) > 0}), re-

stricted to units with Rn,i = 1. Finally, we compute the standard errors based on (13) with
γ̃n = γ̂n for θcausal,sample and with γ̃n from Appendix A for θcausal, as well as the conventional
Eicker-Huber-White (EHW) standard errors, which are computed from the following variance
estimator: (

Q̃XX
n

)−1
(

1

N

n∑
i=1

Rn,iX̃n,iX̃
′
n,iε̂

2
n,i

)(
Q̃XX

n

)−1
.

When computing the standard errors based on (13), we use the observed network Ãn = [Rn,i ×
Rn,j×An,i,j ]i,j , which is the sampled network with induced subgraph links. We repeat this process
2,000 times. The overlapping case is implemented in the same manner, except that we use T̃ overlap

n,i

instead of T̃n,i, and the third element of Z̃n,i is replaced by pn1{
∑

j ̸=i

∑
k ̸=i,j Rn,jAn,i,jRn,kAn,j,k >

0}.
Simulation results for ρn ∈ {0.1, 0.5, 1.0} are summarized in Table 3. In Panel A, we use T̃n,i

whose w̃eakn,i does not have an overlap in D∗
n,j for any j with ñetn,i. In Panel B, we use T̃ overlap

n,i

whose w̃eak
overlap
n,i does share some D∗

n,j with ñetn,i. Also note that, in both panels, the true
exposure mapping is fixed to Tn,i defined above. Hence, the population-level causal estimands
θcausaln are the same regardless of which T̃n,i or T̃ overlap

n,i is used.
From Panel A of Table 3 (no overlap case), we can observe that the sample-level estimand and

estimator largely deviate from the population-level estimand for netn,i. This deviation is driven
not by contamination, but by the difference between netn,i and ñetn,i:

netn,i =

∑
j ̸=iAn,i,jRn,jD

∗
n,j∑

j ̸=iAn,i,j
̸=
∑

j ̸=iAn,i,jRn,jD
∗
n,j∑

j ̸=iRn,jAn,i,j
= ñetn,i.

When ρn is small, the denominator of w̃eakn,i tends to be smaller than that of netn,i, which
results in a downward bias.

Because of the bias, the coverage probabilities against θcausaln are close to 0 with both EHW
standard errors and those based on (13), especially when ρn is small. However, as ρn increases, the
bias and coverage probabilities tend to improve with our proposed standard errors (13) because
the difference between Tn,i and T̃n,i becomes smaller and the standard errors are designed to be
conservative. In contrast, the EHW standard errors fail to capture the dependence structure and
thus severely under-cover the causal estimands as ρn increases.

From Panel B of Table 3 (with overlap case), we can observe a similar pattern as in Panel
A when ρn is small. However, a crucial difference arises when ρn = 1.0. We can observe that
θcausal,sample
n,(3) and θ̂n,(3) are largely biased downward compared with θcausaln,(3) , with a magnitude

similar to that of θcausaln,(2) . Since the true θn,i,(3) = 0 for all i, this bias is mainly driven by
contamination, as suggested by Corollary 1. The contamination bias is also reflected in the
average absolute deviation of the estimator and the coverage probabilities against θcausaln,(3) for
both EHW standard errors and those based on (13), resulting in under-coverage.
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In summary, the simulation results in Table 3 show that the deviation of T̃n,i from Tn,i can lead
to severe bias and under coverage for the population causal estimands. The results also highlight
the potential severity of contamination bias when there is a small overlap in elements of T̃n,i,
whose size can be comparable to the true spillover effects. This emphasizes the importance of
choice of g̃ in practice and calls for caution when interpreting the results based on the linear
regression framework. In the next section, we discuss whether the contamination bias is present
in the real data application.

Table 3. Simulation Results: Tn,i ̸= T̃n,i case

Panel A: No Overlaps
ρ = 0.1 ρ = 0.5 ρ = 1.0

D net weak D net weak D net weak
θcausal 0.348 0.567 0.0 0.348 0.567 0.0 0.348 0.567 0.0
θcausal,sample 0.347 0.153 0.0 0.348 0.282 0.0 0.348 0.567 0.0
θ̂ 0.347 0.139 0.009 0.346 0.28 -0.004 0.347 0.565 -0.01
SE EHW 0.163 0.251 0.475 0.087 0.113 0.128 0.068 0.11 0.111
SE (13) θcausal 0.165 0.263 0.549 0.102 0.135 0.175 0.108 0.191 0.233
SE (13) θcausal,sample 0.163 0.248 0.398 0.1 0.133 0.153 0.104 0.198 0.173
|θ̂ − θcausal| 0.182 0.47 0.696 0.08 0.292 0.159 0.058 0.141 0.153
|θ̂ − θcausal,sample| 0.18 0.289 0.696 0.08 0.124 0.159 0.058 0.141 0.153
Coverage EHW θcausal 0.844 0.56 0.703 0.908 0.335 0.797 0.938 0.775 0.74
Coverage EHW θcausal,sample 0.846 0.819 0.703 0.909 0.836 0.797 0.938 0.775 0.74
Coverage (13) θcausal 0.847 0.577 0.768 0.942 0.443 0.922 0.997 0.968 0.964
Coverage (13) θcausal,sample 0.844 0.813 0.618 0.939 0.898 0.87 0.995 0.971 0.915

Panel B: With Overlaps
ρ = 0.1 ρ = 0.5 ρ = 1.0

D net weak D net weak D net weak
θcausal 0.348 0.567 0.0 0.348 0.567 0.0 0.348 0.567 0.0
θcausal,sample 0.347 0.149 0.032 0.348 0.279 0.008 0.348 0.773 -0.356
θ̂ 0.347 0.135 0.037 0.346 0.28 0.0 0.347 0.783 -0.374
SE EHW 0.163 0.269 0.447 0.087 0.155 0.176 0.068 0.249 0.264
SE (13) θcausal 0.165 0.279 0.492 0.102 0.186 0.22 0.105 0.419 0.452
SE (13) θcausal,sample 0.163 0.265 0.416 0.1 0.18 0.204 0.104 0.394 0.395
|θ̂ − θcausal| 0.181 0.476 0.59 0.08 0.297 0.204 0.058 0.279 0.439
|θ̂ − θcausal,sample| 0.179 0.295 0.589 0.08 0.147 0.204 0.058 0.211 0.295
Coverage EHW θcausal 0.845 0.584 0.756 0.908 0.528 0.828 0.936 0.854 0.65
Coverage EHW θcausal,sample 0.84 0.845 0.752 0.91 0.896 0.828 0.936 0.928 0.834
Coverage (13) θcausal 0.848 0.597 0.8 0.938 0.653 0.918 0.996 0.987 0.902
Coverage (13) θcausal,sample 0.84 0.837 0.714 0.936 0.933 0.886 0.995 0.995 0.96

Note: Panel A reports the results when T̃n,i is used while Panel B reports the results when T̃ overlap
n,i is used. The

first three rows report the averages of the population and sample-level causal estimands and the OLS estimator.
The fourth and fifth rows report the averages of the EHW standard errors and our proposed standard errors
based on (13). The sixth and seventh rows report the average absolute deviations of the estimator from the
two causal estimands. The last four rows report the coverage probabilities of the 95% confidence intervals
constructed using the EHW standard errors and the standard errors based on our proposed method (13) for the
two causal estimands.

6. Empirical Illustration

In an influential study, Cai et al. (2015) conducted a large-scale network experiment in which
they randomly assigned information sessions on weather insurance products to rice farmers in
rural villages in China. Out of 185 randomly selected villages, all rice farmers were invited
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to participate, and approximately 90% agreed to attend. The researchers administered both a
household survey (to gather farmer characteristics) and a network survey (to collect friendship
links). In the network survey, household heads were asked to list their five closest friends with
whom they discussed rice production and financial matters, which provides a star sampling
network. They were allowed to list friends outside of their village.11

The information sessions were conducted in two rounds (first and second) and with varying
intensity (simple or intensive). Farmers were randomly assigned to one of four possible sessions.
The main outcome here, Yn,i, is a test score measuring understanding of the insurance product,
taking 10 values between 0 and 1 (test). The treatment variable, Dn,i, indicates whether a farmer
was assigned to an intensive session (intensive). To measure the spillover/diffusion effects of the
information sessions on farmers’ knowledge, the researchers focused on a subsample of farmers
who were not invited in the first round and defined (i) the fraction of a farmer’s friends who
attended an intensive session in the first round (net) and (ii) the fraction of those friends’ friends
who attended an intensive session in the first round (weak).

As discussed in Example 10 and the simulation section, including first-order overlaps between
net and weak can significantly affect inference through induced contamination bias.12 Here,
we empirically examine whether such overlaps make a significant difference by comparing results
when these overlaps are included or excluded in net and weak. Specifically, we run the following
regression for the overlap and no-overlap specifications:13

test ∼ intensive + net + weak + controls.

For estimation, unlike in the simulation exercise above, we use all the available villages in
the sample, as done in Cai et al. (2015). We control for household characteristics, village fixed
effects, and network information (degree dummy) to satisfy Assumption 4. Standard errors are
calculated via our proposed method (13), with K = 2.

Table 4 reports the OLS estimator θ̂n and its standard errors, both with and without overlaps
in the exposure mappings. When overlaps are included, the coefficient for net remains largely
unchanged, but the estimate for weak becomes substantially more negative. Specifically, the
coefficient on weak is statistically significant at the 95% confidence level under the overlap spec-
ification, and its magnitude nearly doubles compared to the no-overlap specification—becoming
comparable in size (but opposite in sign) to that of net. This highlights the risk of overstating
the effect of weak connections due to contamination bias, even when the true effect may be small
or absent.

11Cai et al. (2015) conducted a pilot network survey in two villages without limiting the number of friends, but
found that most farmers listed five or fewer friends. We take this analysis at face value and assume that there is
no concern about censoring the number of friends.
12We found that Cai et al. (2015) included such overlaps in their version of weak; see the data/do/rawnet.do
file in their replication folder: https://www.openicpsr.org/openicpsr/project/113593/version/V1/view;
jsessionid=743ABAC8AEBB3E612D4250D02BE40429.
13Note that Cai et al. (2015) specified the exposure mapping as either (intensive, net) or (weak), running regressions
separately. Here, we consider a hypothetical scenario where both net and weak are included in the regression
simultaneously, rather than replicating their original results.

https://www.openicpsr.org/openicpsr/project/113593/version/V1/view;jsessionid=743ABAC8AEBB3E612D4250D02BE40429
https://www.openicpsr.org/openicpsr/project/113593/version/V1/view;jsessionid=743ABAC8AEBB3E612D4250D02BE40429
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Table 4. Regression Results for Cai et al. (2015)’s data

With Overlaps No Overlaps
intensive 0.0752 0.0734

(0.0159) (0.0164)
net 0.3110 0.2879

(0.0527) (0.0500)
weak -0.1511 -0.0741

(0.0453) (0.0383)
Notes: The number of villages is 47, and the total sample size is 1247. The first and second
columns report estimates with and without overlaps in first-order links between net and weak.
All regressions include household characteristics, village fixed effects, and network information
as controls. Standard errors, computed using our proposed method (13) with γ̃n = γ̂n, are
reported in parentheses.

This pattern in the empirical results is consistent with the simulation findings in Table 3,
where overlaps in the exposure mapping lead to substantial contamination bias in the estimates
of weak, while the estimates of net remain largely unaffected. Overall, this exercise highlights
that correlations among elements of the exposure mapping can potentially lead to misleading
assessments of causal spillover effects.

7. Conclusion

In this paper, we study a linear regression framework for estimating causal spillover effects in
network experiments. We show that, due to contamination bias, the OLS estimator for spillover
effects does not bear a causal interpretation unless the exposure mapping is free of correlation
among its elements. We also develop a novel asymptotic theory for inference on causal spillover
effects, allowing for explicit sampling of units and networks, as well as network dependence.

Based on our theoretical analysis and simulation/empirical exercises, we recommend that
researchers follow the flowchart in Figure 4 when estimating causal spillover effects in network
experiments using linear regression. A crucial step is to ensure that the exposure mapping
is free of correlations among its elements to avoid contamination bias and to ensure a causal
interpretation of the OLS estimator. If the exposure mapping implied by plausible economic
theories is not free of correlations but is sufficiently discrete (e.g., binary) to satisfy the overlap
condition, we suggest avoiding the OLS estimator and instead using alternative methods, such as
inverse probability weighting (e.g., Aronow and Samii, 2017; Leung, 2022; Gao and Ding, 2023),
to directly estimate the causal treatment effects.

While this paper establishes a comprehensive framework for network experiments on sampled
networks, several avenues for future research emerge. First, relaxing the sampling assumptions
to accommodate cluster and multi-wave designs, as well as allowing more complex assignment
mechanisms, would broaden applicability. The present analysis permits assignment conditional
on observed covariates but excludes matched-pair and blocked randomization. Second, a sys-
tematic comparison between regression-based estimators and inverse-probability-weighting ap-
proaches for spillover effects in network experiments is important, but lies beyond the scope of
this paper.
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Figure 4. Flowchart for Valid Inference with Linear Regression
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This supplementary appendix contains proofs of the results in the main text as well as auxiliary
results. Appendix A discusses how to estimate the nuisance parameters consistently. Appen-
dix B contains technical lemmas. Appendix C contains proofs. Appendix D presents additional
simulation results. Appendix E lists the papers included in the survey of network experiment
research presented in the Introduction.

Appendix A. Example for γ̃n = γcausaln + op(1)

In Theorems 6 and 7, we need some γ̃n satisfying γ̃n = γcausaln + op(1). By Assumption 7 (ii),
we, without loss of generality, assume that the first m elements of Zn,i depend on Rn,i multiplica-
tively.14 We allow general heterogeneous treatment assignment in Assumption 1 (iii). We also
assume that the researcher knows ρn or the population size n. Let Zn,i = (Z ′

(1:m),n,i, Z
′
−(1:m),n,i)

′,
where Z(1:m),n,i is the first m elements of Zn,i and Z−(1:m),n,i are the remaining elements. Recall
that Z̃n,i = Zn,i under Assumption 7.

Define
γ̃n = (P̃ZZ

n )−1P̃ZY
n , (14)

where

P̃ZZ
n =

1

N

n∑
i=1

Rn,i

(
ρnZ(1:m),n,iZ

′
(1:m),n,i ρnZ(1:m),n,iZ

′
−(1:m),n,i

ρnZ−(1:m),n,iZ
′
(1:m),n,i Z−(1:m),n,iZ

′
−(1:m),n,i

)
,

P̃ZY
n =

1

N

n∑
i=1

Rn,i

(
ρnZ(1:m),n,i

Z−(1:m),n,i

)
Yn,i.

Note that some elements of P̃ZZ
n and P̃ZY

n are rescaled by ρn from Q̃ZZ
n and Q̃ZY

n . ρn can be
replaced with its consistent estimator N/n. The consistency of γ̃n is shown in Lemma 15.

Appendix B. Preliminary Results

Remember that for each i ∈ Nn,

Tn,i = g(i,Dn,An);

T̃n,i = g̃(i,Dn, Ãn);

Xn,i = Tn,i − ΛnZn,i;

X̃n,i = T̃n,i − Λ̃nZ̃n,i,

14In the usual applications, it is enough to consider the m = 1 case.
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where

Λn = (
n∑

i=1

E[Tn,iZ ′
n,i])(

n∑
i=1

E[Zn,iZ
′
n,i])

−1;

Λ̃n = (

n∑
i=1

Rn,iE[T̃n,i|Rn]Z̃
′
n,i)(

n∑
i=1

Rn,iZ̃n,iZ̃
′
n,i)

−1,

and

Ωn =
1

n

n∑
i=1

E


 Yn,i

Xn,i

Zn,i


 Yn,i

Xn,i

Zn,i


′ ≡

 ΩY Y
n ΩY X

n ΩY Z
n

ΩXY
n ΩXX

n ΩXZ
n

ΩZY
n ΩZX

n ΩZZ
n

 ;

Q̃n =
1

N

n∑
i=1

Rn,i

 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

≡

 Q̃Y Y
n Q̃Y X

n Q̃Y Z
n

Q̃XY
n Q̃XX

n Q̃XZ
n

Q̃ZY
n Q̃ZX

n Q̃ZZ
n

 ;

Ω̃n =
1

N

n∑
i=1

Rn,iE


 Yn,i

X̃n,i

Z̃n,i


 Yn,i

X̃n,i

Z̃n,i


′

| Rn

 ≡

 Ω̃Y Y
n Ω̃Y X

n Ω̃Y Z
n

Ω̃XY
n Ω̃XX

n Ω̃XZ
n

Ω̃ZY
n Ω̃ZX

n Ω̃ZZ
n

 .

B.1. Preliminary Lemmas. We will use the following results from Kojevnikov et al. (2021).
We will only state the conditional version of the results, but also use the unconditional version
of the results, which can be understood analogously.

Define

σ2n = Var(Sn | Rn),

where Sn =
∑

i∈Nn
Ui,n.

Condition 1. A triangular array {Un,i} is conditionally ψ-dependent given Rn with ξn satisfying

• For some constant C > 0,

ψa,b(f, g) ≤ C × ab(∥f∥∞ + Lip(f))(∥g∥∞ + Lip(g)).

• supnmaxs≥1 ξn,s <∞ a.s.
• For some p > 4, supn≥1maxi∈Nn E[|Un,i|p | Rn] <∞ a.s.
• There exists a positive sequence mn → ∞ such that for k = 1, 2,

n

σ2+k
n

∑
s≥0

cn(s,mn; k)ξ
1− 2+k

p
n,s

a.s.−→ 0,

n2ξ
1−1/p
n,mn

σn

a.s.−→ 0.

• E[Un,i | Rn] = 0.

Lemma 1 (CLT, Theorem 3.2 in Kojevnikov et al., 2021). Under Condition 1,

sup
t∈R

∣∣∣∣P{Snσn ≤ t | Rn

}
− Φ(t)

∣∣∣∣ a.s.−→ 0 as n→ ∞,

where Φ denotes the distribution function of N (0, 1).
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Lemma 2 (Linear Transformation, Lemma 2.1 in Kojevnikov et al., 2021). For each n ≥ 1, let
{an,i}i∈Nn

be a sequence of σ(Rn)-measurable vectors such that maxi∈Nn ∥an,i∥ ≤ 1 a.s. Under
the first condition of Condition 1, the array a′n,iUn,i is conditionally ψ-dependent given Rn with
the dependence coefficients {ξn}.

Condition 2. Let ω(x) = 1{|x| ≤ 1}. There exists p > 4 such that

• supn≥1maxi∈Nn E[|Un,i|p | Rn] <∞ a.s.
• limn→∞

∑
s≥1 |ω(s/2K)− 1| δ∂n(s, 1)ξ

1−(2/p)
n,s = 0 a.s.

• limn→∞ n−1
∑

s≥0 cn (s, 2K; 2) ξ
1−(4/p)
n,s = 0 a.s.

Lemma 3 (Variance Consistency, 2K Local Case of Proposition 4.1. in Kojevnikov et al., 2021).
Suppose that Conditions 1 and 2 hold. Then as n→ ∞,

E


∥∥∥∥∥∥ 1n

n∑
i=1

∑
j∈Ñn(i;2K)

Un,iU
′
n,j −Var

(
Sn√
n
| Rn

)∥∥∥∥∥∥
F

| Rn

 a.s.−→ 0,

where ∥ · ∥F is the Frobenius norm. By Markov’s inequality, we also have

1

n

n∑
i=1

∑
j∈Ñn(i;2K)

Un,iU
′
n,j −Var

(
Sn√
n
| Rn

)
pR−→ 0.

B.2. Main Lemmas.

Lemma 4. Under ρnn→ ∞,

N > 0 a.s. for large enough n

Proof. Since the result is trivial for ρn = 1, we focus on the case ρn ∈ (0, 1). By the inequality
1− x ≤ e−x for x ∈ (0, 1), we have (1− ρn)

n ≤ e−nρn . Thus,
∞∑
n=1

P(N = 0) =
∞∑
n=1

P

(
n∑

i=1

Rn,i = 0

)
=

∞∑
n=1

(1− ρn)
n ≤

∞∑
n=1

e−nρn .

ρnn→ ∞ implies the right-hand side is bounded. By the Borel-Cantelli lemma, we can conclude.
□

Lemma 5. Under ρ2nn→ ∞,

N

nρn

a.s.−→ 1

as n→ ∞.

Proof. Pick any ε > 0. By Hoeffding’s inequality with Ri ∈ [0, 1],

P
(∣∣∣∣ Nnρn − 1

∣∣∣∣ > ε

)
= P (|N − nρn| > εnρn) = P

(∣∣∣∣∣
n∑

i=1

Ri − nρn

∣∣∣∣∣ > εnρn

)

≤ 2 exp

(
−2(εnρn)

2

n

)
= 2 exp

(
−2ε2nρ2n

)
.

ρ2nn → ∞ implies
∑∞

n=1 P
(∣∣∣ N

nρn
− 1
∣∣∣ > ε

)
is bounded. From the Borel-Cantelli lemma, we can

conclude. □
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Lemma 6. Assume that Assumptions 3 and 4 hold. Then, for large enough n,

Λn = Ln, Xn,i = Tn,i − E[Tn,i|Rn] a.s.,

and
Λ̃n = L̃n, X̃n,i = T̃n,i − E[T̃n,i|Rn] a.s.

Proof. Observe that Λn = Ln a.s. for large enough n as

Λn =
n∑

i=1

E[E[Tn,i|Rn]Z
′
n,i]

(
n∑

i=1

E[Zn,iZ
′
n,i]

)−1

= Ln

n∑
i=1

E[Zn,iZ
′
n,i]

(
n∑

i=1

E[Zn,iZ
′
n,i]

)−1

= Ln,

where Λn is well-defined by Assumption 3 and the second equality holds by Assumption 4.
Similarly, Λ̃n = L̃n a.s. for large enough n as

Λ̃n =

n∑
i=1

Rn,iE[T̃n,i|Rn]Z̃
′
n,i

(
n∑

i=1

Rn,iZ̃n,iZ̃
′
n,i

)−1

= L̃n

n∑
i=1

Rn,iZ̃n,iZ̃n,i

(
n∑

i=1

Rn,iZ̃n,iZ̃
′
n,i

)−1

= L̃n,

where Λ̃n is well-defined by Assumption 3 and the second equality holds by Assumption 4.
Since we define Xn,i = Tn,i − ΛnZn,i and X̃n,i = T̃n,i − Λ̃nZ̃n,i, Assumption 4 and the above

two displayed qualities imply for large enough n, Xn,i = Tn,i − E[Tn,i|Rn] a.s. and X̃n,i =

T̃n,i − E[T̃n,i|Rn] a.s. □

Lemma 7. Suppose that T̃n,i = Tn,i and Z̃n,i = Zn,i for all i ∈ Nn and n ∈ N. Under Assump-
tions 3 and 4, (i) Λ̃n = Λn a.s. and (ii) X̃n,i = Xn,i a.s.

Proof. The results follow directly from Lemma 6. □

Lemma 8. Assume that Assumptions 1 to 5 hold. The following sequences of triangular arrays
are ψ-dependent with ξn,s = 1{s ≤ 2K}:

Xn,iZ
′
n,i, Xn,iX

′
n,i, Xn,iYn,i, Zn,iZ

′
n,i, Zn,iYn,i.

The following sequences of triangular arrays are conditionally ψ-dependent given Rn with ξn,s =
1{s ≤ 2K}:

Rn,iX̃n,iZ̃
′
n,i, Rn,iX̃n,iT̃

′
n,i, Rn,iX̃n,iYn,i, Rn,iZ̃n,iZ̃

′
n,i, Rn,iZ̃n,iYn,i.

Proof. By Assumption 5, we can set ξn,s = 1{s ≤ 2K} for s ≥ 1 since if dn(A,B) > 2K,
f(Un,A) ⊥⊥ g(Un,B) for any f ∈ Lv,a and g ∈ Lv,b as long as Un,i are based on T̃n,i, Tn,i, Z̃n,i, Zn,i, Ỹn,i, Yn,i.
For large enough n, Lemma 6 implies Xn,i = Tn,i−E[Tn,i|Rn] and X̃n,i = T̃n,i−E[T̃n,i|Rn] almost
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surely. Thus, for large enough n, Xn,i and X̃n,i also have the local dependence with 2K. By
Assumption 3, each element is uniformly bounded. Thus, we can set ψa,b(f, g) = 2∥f∥∞∥g∥∞
for any f ∈ Lv,a and g ∈ Lv,b. This completes the proof. □

Lemma 9. Under Assumption 3,

max
i

|ε̃n,i| <∞ a.s. and max
i

|εn,i| <∞ a.s.

Proof. Under the uniform boundedness and the invertibility condition (Assumption 3), ∥θcausal,sample
n ∥ <

∞ a.s. and ∥γcausal,sample
n ∥ <∞ a.s. Thus, by the Schwarz Inequality,

|ε̃n,i| ≤ max
i

|Yn,i|+max
i

∥X̃n,i∥ × ∥θcausal,sample
n ∥+max

i
∥Z̃n,i∥ × ∥γcausal,sample

n ∥

<∞ a.s.

for all i. The bound for |εn,i| can be derived similarly. □

Lemma 10. Under Assumptions 1 to 6,

Q̃n − Ω̃n
pR−→ 0 and Q̃n − Ω̃n

p→ 0.

Proof. Let Wn,i ≡ (Yn,i, X̃n,i, Z̃n,i)
′. Then,

Q̃n − Ω̃n =
1

N

n∑
i=1

Rn,i(Wn,iW
′
n,i − E[Wn,iW

′
n,i|Rn])

=
nρn
N

× 1

nρn

n∑
i=1

Rn,i

(
Wn,iW

′
n,i − E[Wn,iW

′
n,i|Rn]

)
.

Since (nρn)/N
a.s.−→ 1 (Lemma 5) implies (nρn)/N

pR−→ 1, it suffices to show that

1

nρn

n∑
i=1

Rn,i

(
Wn,iW

′
n,i − E[Wn,iW

′
n,i|Rn]

) pR−→ 0.

We will show it by verifying

E

( 1

nρn

n∑
i=1

Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

))2

| Rn

 a.s.−→ 0

for all k, ℓ = 1, . . . , d
T̃
. Observe that

E

( 1

nρn

n∑
i=1

Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

))2

| Rn


=

1

n2ρ2n

n∑
i=1

Rn,iE
[
(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])

2 | Rn

]
(15)

+
1

n2ρ2n

∑
i ̸=j

Rn,iRn,jE[(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])

× (Wn,j,(k)Wn,j,(ℓ) − E[Wn,j,(k)Wn,j,(ℓ)|Rn]) | Rn] (16)
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For (15), since there is some absolute constant C such that |Wn,j,(k)Wn,j,(ℓ)| < C by Assump-
tion 3,

(15) ≤ 1

n2ρ2n

n∑
i=1

(2C)2 = 4C2 × 1

nρ2n
→ 0

where the inequality and the convergence do not depend on Rn.
For (16), note that if dn(i, j) > 2K, then

E[(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])(Wn,j,(k)Wn,j,(ℓ) − E[Wn,j,(k)Wn,j,(ℓ)|Rn]) | Rn] = 0

as Rn,i is i.i.d and (Tn,i, T̃n,i) ⊥⊥ (Tn,j , T̃n,j) with no overlap in Dn and Rn. Thus,

(16) =
1

n2ρ2n

n∑
i=1

∑
j∈N (i,2K)\{i}

Rn,iRn,jE[(Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ)|Rn])

× (Wn,j,(k)Wn,j,(ℓ) − E[Wn,j,(k)Wn,j,(ℓ)|Rn]) | Rn]

≤ 4C2 × 1

nρ2n

∑
1≤s≤2K

δ∂n(s; 1) → 0,

where the last line holds by Assumption 6, and the inequality and the convergence do not depend
on Rn.

Thus, by Markov’s inequality for
(

1
nρn

∑n
i=1Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

))2
,

1

nρn

n∑
i=1

Rn,i

(
Wn,i,(k)Wn,i,(ℓ) − E[Wn,i,(k)Wn,i,(ℓ) | Rn]

) pR−→ 0,

and

Q̃n − Ω̃n
pR−→ 0.

Unconditional consistency can be shown easily from this result. Since a conditional probability
is bounded, the dominated convergence theorem and the law of iterated expectations imply
Q̃n − Ω̃n

p→ 0. □

Lemma 11. Let Wn,i be a scalar random variable satisfying |Wn,i| ≤ W < ∞ a.s. We allow
Wn,i to depend on Rn and Dn, but assume that Wn,i ⊥⊥ Rn,i and Wn,i ⊥⊥Wn,j if dn(i, j) > 2K.
Then, under Assumptions 1 and 6,

1

N

n∑
i=1

Rn,iE[Wn,i|Rn]−
1

n

n∑
i=1

E[Wn,i]
p→ 0.

Proof. By Lemma 5,

1

N

n∑
i=1

Rn,iE[Wn,i|Rn] =
1

n

n∑
i=1

Rn,i

ρn
E[Wn,i|Rn] + op(1).

Thus, it suffices to show that

E

( 1

n

n∑
i=1

Rn,i

ρn
E[Wn,i|Rn]−

1

n

n∑
i=1

E[Wn,i]

)2
→ 0 (17)
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The left-hand side of (17) is given by

1

n2

n∑
i=1

E

[(
Rn,i

ρn
E[Wi,n|Rn]− E[Wn,i]

)2
]

(18)

+
1

n2

∑
i ̸=j

E
[(

Rn,i

ρn
E[Wn,i|Rn]− E[Wn,i]

)(
Rn,j

ρn
E[Wn,j |Rn]− E[Wn,j ]

)]
(19)

For (18), we have

(18) ≤ 2

n2

n∑
i=1

E

[(
Rn,i

ρn

)2

(E[Wi,n|Rn])
2 + (E[Wn,i])

2

]

≤ 2W
2

n

[
E

[(
Rn,i

ρn

)2
]
+ 1

]
,

where the first inequality holds from the inequality (a − b)2 ≤ 2(a2 + b2) for any a, b ∈ R and
the second inequality holds by the uniform boundedness. Note that

1

n
E

[(
Rn,i

ρn

)2
]
=

1

nρn
= o(1).

For (19),

(19) =
1

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

E
[(

Rn,i

ρn
E[Wn,i|Rn]− E[Wn,i]

)(
Rn,j

ρn
E[Wn,j |Rn]− E[Wn,j ]

)]

≤ W
2

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

E
[∣∣∣∣Rn,i

ρn
− 1

∣∣∣∣ · ∣∣∣∣Rn,j

ρn
− 1

∣∣∣∣]

≤ W
2

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

E

[(
Rn,i

ρn
− 1

)2
]

=

(
1

ρn
− 1

)
W

2

n2

n∑
i=1

∑
j∈Nn(i,2K)\{i}

1 = O

(
1

nρn

) ∑
1≤s≤2K

δ∂n(s; 1) = o(1),

where the first equality holds by Wn,i ⊥⊥ Rn,j , Wn,i ⊥⊥Wn,j if dn(i, j) > 2K, and Assumption 1,
the first inequality holds by the uniform boundedness, the next inequality holds by the Cauchy-
Schwarz inequality, and the last step follows from Assumption 6.

Combining the arguments for (18) and (19), we have shown the convergence (17) as n →
∞. □

Lemma 12. Let Wn,i be a scalar random variable satisfying |Wn,i| ≤ W < ∞ a.s. We allow
Wn,i to depend on Rn and Dn, but assume that Wn,i ⊥⊥ Rn,i and Wn,i ⊥⊥Wn,j if dn(i, j) > 2K.
Then, under Assumptions 1 and 6,

1

N

n∑
i=1

Rn,iE[Rn,iWn,i|Rn]−
1

nρn

n∑
i=1

E[Rn,iWn,i] =
1

N

n∑
i=1

Rn,iE[Wn,i|Rn]−
1

n

n∑
i=1

E[Wn,i]

p→ 0.

Proof. The result follows by the same logic as Lemma 11. □
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Lemma 13. Under Assumptions 1 to 6 and 8,

Σ̃−1/2
n

n∑
i=1

Rn,iX̃n,iε̃n,i
dR−→ N(0, Id

T̃
).

Proof. We use the Cramer-Wold device and verify Condition 1 for any given a ∈ R|T |.
First, we will transform the statistics and verify the zero expectation condition. The orthog-

onality condition for θcausal,sample
n (5) implies

n∑
i=1

Rn,iE
[
X̃n,iε̃n,i | Rn

]
= 0. (20)

Define Un,i ≡ Rn,iX̃n,iε̃n,i−E
[
Rn,iX̃n,iε̃n,i | Rn

]
. Then, Σ̃−1/2

n
∑n

i=1Rn,iX̃n,iε̃n,i = Σ̃
−1/2
n

∑n
i=1 Un,i

and we have E[Un,i | Rn] = 0 for all i.
By the Cramer-Wold device, it suffices to show that∑n

i=1 a
′Un,i√

a′Σ̃na

dR−→ N(0, 1)

for any a ∈ Rd
T̃ with a′a = 1.

By Lemmas 2 and 8, a′Un,i is conditionally ψ-dependent with ξn,s = 1{s ≤ 2K} given Rn.
The other conditions are assumed in Assumption 8 or automatically satisfied under the local
dependence (Assumption 5). □

Lemma 14. Under Assumptions 1 to 8,

Σ−1/2
n

n∑
i=1

Rn,iXn,iεn,i
d→ N(0, IdT ).

Proof. An orthogonality condition for θcausaln (4) implies
n∑

i=1

E [Xn,iεn,i] = 0. (21)

By Assumptions 2 and 7 (i),

Xn,iεn,i = Xn,i(Yn,i −X ′
n,iθ

causal
n − Z ′

n,iγ
causal
n )

= Xn,iT
′
n,iθn,i +Xn,iνn,i −Xn,iX

′
n,iθ

causal
n −Xn,iZ

′
n,iγ

causal
n .

By Lemma 6 and Assumption 7 (ii), Rn,i enters only multiplicatively for Tn,i and Xn,i = Tn,i −
E[Tn,i|Rn]. By Assumption 7 (ii), each element of Zn,i is multiplicatively in Rn,i. Thus, each
element ofXn,iεn,i is multiplicatively in Rn,i by R2

n,i = Rn,i. Combining it with the orthogonality,

n∑
i=1

E[Rn,iXn,iεn,i] = 0.
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Define Un,i = Rn,iXn,iεn,i − E[Rn,iXn,iεn,i]. Then, we have

Σ−1/2
n

n∑
i=1

Rn,iXn,iεn,i = Σ−1/2
n

n∑
i=1

Un,i +Σ−1/2
n

n∑
i=1

E[Rn,iXn,iεn,i]

= Σ−1/2
n

n∑
i=1

Un,i,

and E[Un,i] = 0.
The remaining parts of the proof are similar to Lemma 13. □

Lemma 15. Under Assumptions 1 to 6,

γ̂n − γcausal,sample
n

pR−→ 0.

If we assume Assumption 7 additionally,

γ̃n − γcausaln
p→ 0,

where γ̃n is defined in (14).

Proof. We can show γ̂n − γcausal,sample
n

pR−→ 0 by Lemma 10 as the proof for Theorem 2.

Next, we show γ̃n−γcausaln
p→ 0. By Lemma 10, P̃ZZ

n
pR−→ E[P̃ZZ

n |Rn] and P̃ZY
n

pR−→ E[P̃ZY
n |Rn].

By Lemma 11 and Lemma 12, E[P̃ZZ
n |Rn]

p→ ΩZZ
n and E[P̃ZY

n |Rn]
p→ ΩZY

n . Thus, we can
conclude by the continuous mapping theorem. □

Appendix C. Proofs

C.1. Proof of Theorem 1.

Proof. Lemma 6 implies that

ΩXZ
n = 0 = E[(Tn,i − E[Tn,i|Rn])Z

′
n,i] = 0

for large enough n. Similarly,

Ω̃XZ
n = E[X̃n,iZ̃

′
n,i|Rn] = E[(T̃n,i − E[T̃n,i|Rn])Z̃

′
n,i|Rn] = 0 a.s.

for large enough n since Z̃n,i is measurable with respect to σ(Rn).
Therefore, for large enough n,

θcausaln =
(
ΩXX
n

)−1
ΩXY
n ,

and

θcausal,sample
n =

(
Ω̃XX
n

)−1
Ω̃XY
n a.s.

They are well-defined under Assumption 3. Then, it suffices to show that for large enough n,

E[Xn,iYn,i] = E[Xn,iX
′
n,i]θn,i,

and

E[X̃n,iYn,i|Rn] = E[X̃n,iX
′
n,i|Rn]θn,i a.s.
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The following transformations hold for large enough n:

E[Xn,iYn,i] = E[Xn,iT
′
n,i]θn,i + E[Xn,i]νn,i

= E[Xn,iX
′
n,i]θn,i + E[Xn,i(Tn,i −Xn,i)

′]θn,i

= E[Xn,iX
′
n,i]θn,i + E[Xn,i]Z

′
n,iΛ

′
nθn,i

= E[Xn,iX
′
n,i]θn,i,

where the first equality holds by Assumption 2, the second and the last equalities follow by
E[Xn,i] = 0, which is implied by Lemma 6, and the third equality follows by the definition of
Xn,i. Similarly, the following transformations hold almost surely for large enough n:

E[X̃n,iYn,i] = E[X̃n,iT
′
n,i|Rn]θn,i + E[X̃n,i|Rn]νn,i

= E[X̃n,iXn,i|Rn]θn,i + E[X̃n,i(Tn,i −Xn,i)
′|Rn]θn,i

= E[X̃n,iX
′
n,i|Rn]θn,i + E[X̃n,i|Rn]Z

′
n,iΛ

′
nθn,i

= E[X̃n,iX
′
n,i|Rn]θn,i,

where we used E[X̃n,i|Rn] = 0. This completes the proof. □

C.2. Proof of Corollary 1.

Proof. By the population version of the Frisch-Waugh-Lovell theorem,

θcausaln,(k) =

∑n
i=1 E[Un,i,(k)Yn,i]∑n

i=1 E[U2
n,i,(k)]

By the linearity of the model (Assumption 2), the numerator can be transformed as
n∑

i=1

E[Un,i,(k)Yn,i] =

n∑
i=1

E[Un,i,(k)T
′
n,i]θn,i +

n∑
i=1

E[Un,i,(k)]νn,i

=
n∑

i=1

E[Un,i,(k)(Xn,i + E[Tn,i | Rn])
′]θn,i

=

n∑
i=1

E[Un,i,(k)Xn,i,(k)]θn,i,(k) +

n∑
i=1

E[Un,i,(k)X
′
n,i,(−k)]θn,i,(−k),

where the second equality holds as E[Un,i,(k)] = 0, which is implied by E[Xn,i] = 0, a consequence
of Lemma 6 and the last equality follows from the law of iterated expectations and E[Xn,i | Rn] =

0.
Similarly,

θcausal,sample
n,(k) =

∑n
i=1 E[Ũn,i,(k)Yn,i|Rn]∑n

i=1 E[Ũ2
n,i,(k)|Rn]

.
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The numerator is given by
n∑

i=1

Rn,iE[Ũn,i,(k)Yn,i|Rn] =

n∑
i=1

Rn,iE[Ũn,i,(k)T
′
n,i|Rn]θn,i

=
n∑

i=1

Rn,i

dT∑
l=1

E[Ũn,i,(k)Xn,i,(l)|Rn]θn,i,(l).

Under dT = d
T̃
, the last equation can be simplified further to

n∑
i=1

Rn,iE[Ũn,i,(k)Xn,i,(k)|Rn]θn,i,(k) +
n∑

i=1

∑
l ̸=k

Rn,iE[Ũn,i,(k)Xn,i,(l)|Rn]θn,i,(l)

as above. This completes the proof. □

C.3. Proof of Corollary 2.

Proof. By Lemma 6,

E[X̃n,i,(k)Xn,i,(l)|Rn]

=E[(T̃n,i,(k) − E[T̃n,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)])|Rn]

=E[(T̃n,i,(k) − E[T̃n,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)|Rn] + E[Tn,i,(l)|Rn]− E[Tn,i,(l)])|Rn]

=E[(T̃n,i,(k) − E[T̃n,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)|Rn])|Rn]

=Cov(T̃n,i,(k), Tn,i,(l)|Rn).

Also, by the law of iterated expectations,

E[Xn,i,(k)Xn,i,(l)] = E[E[Xn,i,(k)Xn,i,(l)|Rn]]

= E[E[(Tn,i,(k) − E[Tn,i,(k)|Rn])(Tn,i,(l) − E[Tn,i,(l)|Rn])]|Rn]]

= E[Cov(Tn,i,(k), Tn,i,(l)|Rn)].

By Theorem 1 and the above equivalences, the no contamination result follows if the covariance
condition is satisfied.

Moreover, the numerator of θcausal,sample
n,(k) is

n∑
i=1

Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]θn,i,(k) +

n∑
i=1

∑
l∈{1,··· ,dT }\{k}

Rn,iE[X̃n,i,(k)Xn,i,(l)|Rn]θn,i,(l)

=

n∑
i=1

Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn]θn,i,(k),

and Rn,iE[X̃n,i,(k)Xn,i,(k)|Rn] ≥ 0 if we assume that Cov(T̃n,i,(k), Tn,i,(k)|Rn) ≥ 0. □

C.4. Proof of Theorem 2.

Proof. By Lemma 6, we have E[X̃n,iZ̃n,i|Rn] = 0 a.s. for large enough n. Thus, Q̃ZX
n , Q̃XZ

n
a.s.−→ 0.

Since (
θ̂n

γ̂n

)
=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1(
Q̃XY

n

Q̃ZY
n

)
,
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Lemma 10 implies that

θ̂n − θcausal,sample
n = θ̂n − (Ω̃XX

n )−1Ω̃XY
n + opR(1)

pR−→ 0,

which further implies
θ̂n − θcausal,sample

n
p→ 0.

□

C.5. Proof of Theorem 3.

Proof. Since we have already shown Theorem 2, it suffices to prove θcausal,sample
n − θcausaln

p→ 0.
By Lemma 6, we have E[Xn,iZn,i|Rn] = 0 a.s. and E[Xn,iZn,i] = 0 for large enough n. Thus,
for large enough n, θcausal,sample

n = (Ω̃XX
n )−1Ω̃XY

n a.s. and θcausaln = (ΩXX
n )−1ΩXY

n . With-
out loss of generality, assume that the first element of Tn,i depends on Rn,iD

∗
n,i. By As-

sumption 7 (i) and (iii), we can treat the first element of θcausal,sample
n,(1) and θcausal,sample

n,(1) the
other elements separately as θcausaln,(1) = (ΩXX

n,(1,1))
−1ΩXY

n,(1,1), θ
causal
n,(−1) = (ΩXX

n,(−1,−1))
−1ΩXY

n,(−1,−1),

θcausal,sample
n,(1) = (Ω̃XX

n,(1,1))
−1Ω̃XY

n,(1,1), and θcausal,sample
n,(−1) = (Ω̃XX

n,(−1,−1))
−1Ω̃XY

n,(−1,−1), where Ωn,(1,1) is
the (1, 1) element of Ωn and Ωn,(−1,−1) is the submatrix of Ωn except for its first row and first
column. Ω̃n,(1,1) and Ω̃n,(−1,−1) are defined analogously. By Lemma 11,

θcausal,sample
n,(−1) − θcausaln,(−1) = (Ω̃XX

n,(−1,−1))
−1Ω̃XY

n,(−1,−1) − (ΩXX
n,(−1,−1))

−1ΩXY
n,(−1,−1)

p→ 0.

By Lemma 12,

θcausal,sample
n,(1) − θcausaln,(1) = (Ω̃XX

n,(1,1))
−1Ω̃XY

n,(1,1) − ((1/ρn)Ω
XX
n,(1,1))

−1(1/ρn)Ω
XY
n,(1,1)

p→ 0.

We can conclude by stacking them. □

C.6. Proof of Theorem 4.

Proof. We have Ω̃XZ
n

a.s.−→ 0 and (nρn)/N
a.s.−→ 1 under the invertibility and the moment condi-

tions. Thus,

√
nρn

(
θ̂n − θcausal,sample

n

γ̂n − γcausal,sample
n

)

=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1( √
nρn
N

∑n
i=1Rn,iX̃n,iε̃n,i√

nρn
N

∑n
i=1Rn,iZ̃n,iε̃n,i

)

=

( Q̃XX
n O

O Q̃ZZ
n

)−1

+ opR(1)

 (1 + opR(1))
1√
nρn

∑n
i=1Rn,iX̃n,iε̃n,i

(1 + opR(1))
1√
nρn

∑n
i=1Rn,iZ̃n,iε̃n,i

 ,
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and it suffices to show15

1
√
nρn

n∑
i=1

Rn,iX̃n,iε̃n,i = OpR(1), (22)

1
√
nρn

n∑
i=1

Rn,iZ̃n,iε̃n,i = OpR(1), (23)

1
√
nρn

Σ̃−1/2
n = Oa.s.(1) (24)

since these conditions imply that

Σ̃−1/2
n Q̃XX

n

(
θ̂n − θcausal,sample

n

)
=

1
√
nρn

Σ̃−1/2
n Q̃XX

n

(
Q̃XX

n

)−1 1
√
nρn

n∑
i=1

Rn,iX̃n,iε̃n,i + opR(1),

and we can conclude the convergence in conditional distribution with Lemma 13. The dominated
convergence theorem and the law of iterated expectations imply the unconditional result.

We show (22)-(24). By Chebyshev’s inequality, it suffices to show that its conditional variance
is almost surely bounded.

Var

(
1√
n

n∑
i=1

Rn,i√
ρn
X̃n,iε̃n,i | Rn

)

=
1

n

n∑
i=1

Var

(
Rn,i√
ρn
X̃n,iε̃n,i | Rn

)
+

1

n

n∑
i=1

∑
j∈Nn(i,2K)\{i}

Cov

(
Rn,i√
ρn
X̃n,iε̃n,i,

Rn,j√
ρn
X̃n,j ε̃n,j | Rn

)

≤ 1

n

n∑
i=1

Rn,i

ρn
E
[
X̃n,iX̃

′
n,iε̃

2
n,i | Rn

]
(25)

+
1

n

n∑
i=1

∑
j∈Nn(i,2K)\{i}

Rn,iRn,j

ρn

(
E
[
X̃n,iX̃

′
n,j ε̃n,iε̃n,j | Rn

]
− E

[
X̃n,iε̃n,i | Rn

]
E
[
X̃n,j ε̃n,j | Rn

]′)
.

(26)

Each element of the first term (25) is almost surely bounded by(
N

nρn

)
·max

i
∥X̃n,i∥2 ·max

i
|ε̃n,i|2.

Thus, the first term (25) is Oa.s.(1) by Assumption 3 and Lemmas 5 and 9. The second term (26)
is also Oa.s.(1) by a similar argument as the first term and Assumption 6. Hence, (22) is OpR(1).
Similarly, we can show that (23) is OpR(1). (24) is also Oa.s.(1) by the invertibility assumption
(Assumption 3). □

C.7. Proof of Theorem 5.

15A random variable Xn is OpR(1) if for any ε > 0, there exist some constant Mε < ∞ such that

P (∥Xn∥ > Mε | Rn) < ε a.s.

for large enough n.
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Proof. Since X̃n,i = Xn,i and Z̃n,i = Zn,i,

√
nρn

(
θ̂n − θcausaln

γ̂n − γcausaln

)

=

(
Q̃XX

n Q̃XZ
n

Q̃ZX
n Q̃ZZ

n

)−1( √
nρn
N

∑n
i=1Rn,iXn,i(Yn,i −X ′

n,iθ
causal
n − Z ′

n,iγ
causal
n )

√
nρn
N

∑n
i=1Rn,iZn,i(Yn,i −X ′

n,iθ
causal
n − Z ′

n,iγ
causal
n )

)

=

( Q̃XX
n O

O Q̃ZZ
n

)−1

+ op(1)


×

 (1 + op(1))
1√
nρn

∑n
i=1Rn,iXn,iεn,i

(1 + op(1))
1√
nρn

∑n
i=1Rn,iZn,iεn,i

 .

By an argument similar to the proof of Theorem 4, we can show that

1
√
nρn

n∑
i=1

Rn,iXn,iεn,i = Op(1), (27)

1
√
nρn

n∑
i=1

Rn,iZn,iεn,i = Op(1), (28)

1
√
nρn

Σ−1/2
n = Op(1). (29)

Thus, (27) to (29) imply that

Σ−1/2
n Q̃XX

n

(
θ̂n − θcausaln

)
=

1
√
nρn

Σ−1/2
n Q̃XX

n

(
Q̃XX

n

)−1 1
√
nρn

n∑
i=1

Rn,iXn,iεn,i + op(1),

and we can conclude with Lemma 14. □

C.8. Proof of Theorem 6.

Proof. [Proof for 1
nρn

Σ̃n]
Let

1

nρn
Σ̃†
n =

1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,j

(
Ψ̃n,i − E

[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
.

Under the boundedness (Assumption 3) and the local dependence (Assumption 5), Condition 2
is automatically satisfied. Then, Lemma 3 implies that

1

nρn
Σ̃†
n =

1

nρn
Σ̃n + opR(1).

Hence, it suffices to show that

1

N
Σ̂n =

1

nρn
Σ̃†
n + B̃n + opR(1).

Here, maxi |ε̂n,i − ε̃n,i| = oRp (1) by Assumption 3, Theorem 2, and Lemma 15. Also,

1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jX̃n,iX̃
′
n,j ε̂n,iε̂n,j = Oa.s.(1)
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by Assumptions 3 and 6, ρ ∈ (0, 1], and Lemma 9. Thus, we can show that

1

N
Σ̂n =

1

N

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jΨ̂n,iΨ̂
′
n,j

=
1

N

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jX̃n,iX̃
′
n,j ε̂n,iε̂n,j

=
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jX̃n,iX̃
′
n,j ε̃n,iε̃n,j + opR(1), (30)

where the last equality holds by Lemma 5.
Then,

(30) =
1

nρn

n∑
i=1

∑
j∈Ñn(i,2K)

Rn,iRn,jΨ̃n,iΨ̃
′
n,j + opR(1)

=
1

nρn
Σ̃†
n + B̃n + opR(1) (31)

+
2

nρn

n∑
i=1

n∑
j=1

Rn,iRn,j

(
Ψ̃n,i − E

[
Ψ̃n,i | Rn

])
E
[
Ψ̃n,j | Rn

]′
1{d̃n(i, j) ≤ 2K}, (32)

thus, it suffices to show that the remainder term (32) = opR(1).
We will show it element-wise. Take the (k, k′)-element of (32). Let

φ̃i =
n∑

j=1

Rn,jE
[
Ψ̃n,j,(k′) | Rn

]
1{d̃n(i, j) ≤ 2K}.

Then,

E
[∣∣(k, k′)-element of (32)

∣∣ | Rn

]
=E

[∣∣∣∣∣ 2

nρn

n∑
i=1

Rn,i

(
Ψ̃n,i − E

[
Ψ̃n,i,(k) | Rn

])
φ̃i

∣∣∣∣∣ | Rn

]

≤E

( 2

nρn

n∑
i=1

Rn,i

(
Ψ̃n,i − E

[
Ψ̃n,i,(k) | Rn

])
φ̃i

)2

| Rn

1/2

≤ 2

ρn

 1

n2

n∑
i=1

Var
(
Ψ̃n,i,(k) | Rn

)
φ̃2
i +

1

n2

n∑
i=1

∑
j ̸=i

∣∣∣Cov (Ψ̃n,i,(k), Ψ̃n,j,(k) | Rn

)∣∣∣× |φ̃iφ̃j |

1/2

,

where the first inequality follows from Jensen’s inequality.
By Assumption 3 and Lemma 9, Ψ̃n,i,(k) is uniformly bounded, thus maxiVar

(
Ψ̃n,i,(k) | Rn

)
=

Oa.s.(1) and φ̃2
i ≤ C × (

∑n
j=1 1{d̃n(i, j) ≤ 2K})2 ≤ C × |Nn(i; 2K)|2 for some constant C > 0.

Hence, 1
n2

∑n
i=1Var

(
Ψ̃n,i,(k) | Rn

)
φ̃2
i ≤ C ′δn(2K, 2)/n for some constant C ′ > 0. By Assump-

tion 9 (i), δn(2K, 2)/n→ 0 as n→ ∞.
By Lemma 8, Ψ̃n,i,(k) is conditionally ψ-dependent with ξn,s = 1{s ≤ 2K} given Rn, thus∣∣∣Cov (Ψ̃n,i,(k), Ψ̃n,j,(k) | Rn

)∣∣∣ ≤ C ′′∑∞
s=1 1{s ≤ 2K}×1{dn(i, j) = s} for some constant C ′′ > 0.
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Thus,

1

n2

n∑
i=1

∑
j ̸=i

∣∣∣Cov (Ψ̃n,i,(k), Ψ̃n,j,(k) | Rn

)∣∣∣× |φ̃iφ̃j |

≤C
′′

n2

2K∑
s=1

n∑
i=1

∑
j ̸=i

1{dn(i, j) = s}
∑

i′∈N (i,2K)

∑
j′∈N (j,2K)

1

≤C
′′′

n2

2K∑
s=1

|Jn(s, 2K)|

for some constant C ′′′ > 0. By Assumption 9 (ii),
∑2K

s=1 Jn(s, 2K)/n2 → 0 as n→ ∞.
Therefore, we have shown that E [|(k, k′)-element of (32)| | Rn] = oa.s.(1). By Markov’s in-

equality, we can conclude that the remainder term (32) = opR(1).

[Proof for 1
nρn

Σn] Let

1

nρn
Σ†
n =

1

nρn

n∑
i=1

∑
j∈N (i,2K)

(Rn,iΨn,i − ρnE[Ψn,i]) (Rn,jΨn,j − ρnE[Ψn,j ])
′ .

We can show that

1

N
Σ̂n =

1

nρn

n∑
i=1

∑
j∈Nn(i,2K)

Rn,iΨn,iRn,jΨ
′
n,j + op(1)

=
1

nρn
Σ†
n + B̂n + op(1)

+
2

nρn

n∑
i=1

n∑
j=1

(Rn,iΨn,i − ρnE[Ψn,i]) ρnE[Ψn,j ]1{dn(i, j) ≤ 2K}

=
1

nρn
Σ†
n + B̂n + op(1),

where the first equality follows by the similar arguments as we derive (30) and by Lemma 7, the
second equality is a simple transformation, and the last equality holds by the similar arguments
for the remainder term (32). We can conclude by applying Lemma 3 to (nρn)

−1Σ†
n. □

C.9. Proof of Theorem 7.

Proof. Let 1
N Σ̂−

n = 1
N

∑n
i=1

∑n
j=1Rn,iRn,jΨ̂n,iΨ̂

′
n,jK̃

−
n,i,j . Since K̃+

n = K̃n + K̃−
n , we have

1

N
Σ̂+
n =

1

N
Σ̂n +

1

N
Σ̂−
n . (33)

[Proof for 1
nρn

Σ̃n]
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Theorem 6 implies

1

N
Σ̂n

=
1

nρn
Σ̃n + B̃n + opR(1)

=
1

nρn
Σ̃n +

1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′ (
K̃+

n,i,j − K̃−
n,i,j

)
+ opR(1).

By the same logic as in the proof of Theorem 6 after replacing 1{d̃n(i, j) ≤ 2K} by K̃−
n,i,j and

Assumption 9 by Assumption 10, we can show that

1

N
Σ̂−
n =

1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[
Ψ̃n,i | Rn

]
E
[
Ψ̃n,j | Rn

]′
K̃−

n,i,j

+
1

nρn

n∑
i=1

n∑
j=1

Rn,iRn,jE
[(

Ψ̃n,i − E
[
Ψ̃n,i | Rn

])(
Ψ̃n,j − E

[
Ψ̃n,j | Rn

])′
| Rn

]
K̃−

n,i,j

+ opR(1).

We get the conclusion by substituting these results into (33).
[Proof for 1

nρn
Σn]

The proof is similar. By the same logic as in the proof of Theorem 6,

1

N
Σ̂−
n =

1

n

n∑
i=1

n∑
j=1

ρnE [Ψn,i]E [Ψn,j ]
′K−

n,i,j

+
1

nρn

n∑
i=1

n∑
j=1

E
[
(Rn,iΨn,i − ρnE [Ψn,i]) (Rn,jΨn,j − ρnE [Ψn,j ])

′]K−
n,i,j

+ op(1).

We get the conclusion by combining it with the result of Theorem 6. □

Appendix D. Additional simulation results

We consider the following exposure mapping:

Tn,i =

Rn,iD
∗
n,i,
∑
j ̸=i

An,i,jRn,jD
∗
n,j

 =: (Dn,i, netn,i).

We set T̃n,i = Tn,i. Note that, since Dn,i ⊥⊥ netn,i, no contamination bias would arise. Our
focus here is to evaluate our inference procedure based on the asymptotic approximation in this
correctly specified model.

We follow the same implementation procedure as in the simulation exercise in Section 5, except
for the definition of Tn,i and T̃n,i, and θn,i,(1) ∼ Exponential(1/3) and θn,i,(2) =

∑
j ̸=i An,i,j

maxk
∑

j ̸=k An,k,k
.

Here, the average direct effect is 1/3 and the average spillover effect is about 2/9.
In Table 5, Panels A and B, we report the results of this simulation when we vary ρn from

0.1 to 0.5 and from 0.6 to 1.0, respectively. Since the population size (the number of nodes) is
1770, the sample size varies from about 177 to 1770. In each panel, the first three rows report
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the averages of the population and sample-level causal estimands and the OLS estimator. The
fourth to sixth rows report the averages of the EHW standard errors and the averages of our
proposed standard errors in Equation (13). The seventh and eighth rows report the average
absolute deviations of the estimator from the causal estimands. The last four rows report the
coverage probabilities of the 95% confidence intervals constructed using the EHW standard errors
and those based on (13) for the two causal estimands.

The first three rows in Table 5 show that the estimator closely approximates both estimands,
as expected from our asymptotic theory (Theorems 2 and 3). The difference between θcausaln

and θcausal,sample
n is negligible because Tn,i = T̃n,i. We also observe that while the direct effect

estimands θcausal(1) and θcausal,sample
(1) are close to the average direct effect of 1/3, the spillover effect

estimands θcausal(2) and θcausal,sample
(2) are larger than the average spillover effect of 2/9. This occurs

because the spillover effect estimands place greater weight on nodes with more connections, who
tend to have larger spillover effects, resulting in an upward bias. The seventh and eighth rows,
showing the average absolute deviations of the estimator from the estimands, also confirm that
the estimator closely approximates the estimands, especially as ρn increases and the sample size
becomes larger.

The fourth to sixth rows show that our proposed standard errors based on (13) tend to be
larger than the EHW standard errors, especially as ρn increases. This is because (i) the EHW
standard errors do not account for the network dependence structure, and the observed network
becomes denser as ρn increases, and (ii) our standard errors are designed to be conservative, as
established in Theorem 7. When ρn is small, the difference between the two types of standard
errors is less pronounced because (i) the observed network is sparser and the dependence structure
is less important, and (ii) the sample-to-population ratio approaches the infinite population case,
where the standard model-based inference is valid. Additionally, we observe that our proposed
standard errors based on (13) for θcausaln tend to be slightly larger than those for θcausal,sample

n ,
reflecting the additional adjustment for sampling variation in the former.

The last two rows in Table 5 show that the coverage rates based on our proposed method
(13) are reasonably close to the nominal 95% target. We observe under-coverage for θcausaln,(2) and

θcausal,sample
n,(2) when ρn is small, likely due to the small sample size and limited variation in the

net variable in sparse networks. In contrast, the coverage rates for θcausaln,(2) and θcausal,sample
n,(2) based

on the EHW standard errors are substantially below the nominal level as ρn increases. This is
because the EHW standard errors ignore the network dependence structure and finite population
bias, which likely leads to over-rejection of the null hypothesis.

Overall, our simulation exercise shows that as long as the model is correctly specified and
relevant network information is observed, reliable inference for the causal estimands is possible
even when not everyone in the population is sampled. Since exhaustive network collection can be
costly in practice, our results provide a rationale for collecting network data based on sampled
units, which is less costly.
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Table 5. Simulation Results: Tn,i = T̃n,i case

Panel A: ρ = 0.1− 0.5
0.1 0.2 0.3 0.4 0.5

D net D net D net D net D net
θcausal 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312
θcausal,sample 0.346 0.311 0.349 0.311 0.349 0.312 0.349 0.311 0.349 0.312
θ̂ 0.347 0.285 0.350 0.305 0.348 0.308 0.352 0.310 0.350 0.305
SE EHW 0.214 0.265 0.216 0.268 0.153 0.136 0.153 0.136 0.126 0.093
SE (13) θcausal 0.214 0.263 0.215 0.265 0.156 0.146 0.156 0.145 0.132 0.109
SE (13) θcausal,sample 0.214 0.263 0.215 0.265 0.156 0.147 0.156 0.146 0.132 0.110
|θ̂ − θcausal| 0.172 0.233 0.174 0.223 0.119 0.122 0.128 0.118 0.097 0.093
|θ̂ − θcausal,sample| 0.172 0.232 0.171 0.220 0.118 0.120 0.126 0.117 0.096 0.092
Coverage EHW θcausal 0.945 0.920 0.958 0.937 0.953 0.907 0.942 0.919 0.953 0.879
Coverage EHW θcausal,sample 0.948 0.914 0.955 0.933 0.951 0.908 0.945 0.920 0.954 0.886
Coverage (13) θcausal 0.941 0.904 0.953 0.926 0.953 0.924 0.944 0.937 0.963 0.931
Coverage (13) θcausal,sample 0.946 0.907 0.952 0.924 0.955 0.925 0.949 0.939 0.963 0.928

Panel B: ρ = 0.6− 1.0
0.6 0.7 0.8 0.9 1.0

D net D net D net D net D net
θcausal 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312
θcausal,sample 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312 0.348 0.312
θ̂ 0.352 0.311 0.348 0.305 0.350 0.306 0.348 0.305 0.350 0.307
SE EHW 0.126 0.092 0.110 0.071 0.110 0.071 0.099 0.058 0.100 0.058
SE (13) θcausal 0.132 0.109 0.119 0.091 0.119 0.091 0.110 0.082 0.110 0.083
SE (13) θcausal,sample 0.132 0.110 0.119 0.093 0.119 0.093 0.110 0.084 0.110 0.085
|θ̂ − θcausal| 0.105 0.089 0.086 0.076 0.092 0.076 0.078 0.067 0.084 0.067
|θ̂ − θcausal,sample| 0.104 0.088 0.086 0.076 0.091 0.075 0.078 0.067 0.084 0.066
Coverage EHW θcausal 0.942 0.899 0.955 0.845 0.943 0.859 0.952 0.832 0.936 0.816
Coverage EHW θcausal,sample 0.948 0.904 0.954 0.850 0.940 0.862 0.954 0.831 0.940 0.822
Coverage (13) θcausal 0.946 0.940 0.969 0.933 0.953 0.935 0.969 0.951 0.962 0.956
Coverage (13) θcausal,sample 0.953 0.949 0.970 0.936 0.959 0.940 0.970 0.950 0.966 0.959

Note: Panel A reports the results for ρn = 0.1, . . . , 0.5 and Panel B reports the results for ρn = 0.6, . . . , 1.0. The first
three rows report the averages of the population and sample-level causal estimands and the OLS estimator. The fourth
and fifth rows report the averages of the EHW standard errors and our proposed standard errors based on (13). The
sixth and seventh rows report the average absolute deviations of the estimator from the two causal estimands. The
last four rows report the coverage probabilities of the 95% confidence intervals constructed using the EHW standard
errors and the standard errors based on our proposed method (13) for the two causal estimands.

Appendix E. Survey of OLS usage in network experiment applications

In this section, we summarize our survey of the usage of OLS in network experiment appli-
cations in economics, as introduced in the second paragraph of the introduction. Our survey
provides an overview of the prevalence of OLS in estimating spillover effects in network experi-
ments.

We considered papers published from April 2010 through April 2025 in the following journals:
American Economic Review, Econometrica, Quarterly Journal of Economics, Journal of Political
Economy, Review of Economic Studies, American Economic Journal: Applied Economics, and
Journal of Development Economics. We searched for articles that included both “networks” and
either “field experiments” or “randomized trial” as keywords on the Web of Science platform. This
search yielded 52 papers, as listed in Table 6. We then reviewed each paper to determine whether
it conducted a network experiment and estimated spillover effects using regression. Among these,
29 papers ran regressions to estimate spillover effects; all 29 used the OLS estimator, while only
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two papers (Coutts, 2022 and Fafchamps and Vicente, 2013) mentioned propensity scores or used
related estimators.

Table 6. Survey of OLS usage in network experiment applications

Citation Field/Lab Exp w/
Network?

Regression for
Causal Effects?

Estimator(s) Used

Evsyukova, Rusche and Mill
(2024)

Yes Yes OLS, Causal Forest

Batista, Costa, Freitas, Lima
and Reis (2025)

No Yes OLS

Karing (2024) No Yes OLS, Logit
Chegere, Falco and Menzel
(2024)

Yes Yes OLS

Deutschmann, Lipscomb,
Schechter and Zhu (2024)

Yes Yes OLS

Barsbai, Licuanan, Steinmayr,
Tiongson and Yang (2024)

No Yes OLS

Banerjee, Breza, Chan-
drasekhar and Golub (2024)

No Yes OLS, IV

Colonnelli, Li and Liu (2024) No Yes OLS, DiD
Hernandez-Agramonte, Na-
men, Naslund-Hadley and
Biehl (2024)

No Yes OLS, IPW, Logit

Borusyak and Hull (2023) No Yes OLS, 2SLS
Banerjee, Breza, Chan-
drasekhar, Duflo, Jackson
and Kinnan (2023)

Yes Yes OLS

Soldani, Hildebrandt, Nyarko
and Romagnoli (2023)

Yes Yes OLS

Bobonis, Gertler, Gonzalez-
Navarro and Nichter (2022)

No Yes OLS, IV

Alan, Corekcioglu and Sutter
(2022)

Yes Yes OLS

Coutts (2022) Yes Yes Propensity score
matching, OLS

Leung (2022) No (method) - -
Bjorkegren and Karaca (2022) Yes No, Structural OLS
Beaman, BenYishay, Magruder
and Mobarak (2021)

Yes Yes OLS

Hess, Jaimovich and Schuen-
deln (2021)

Yes Yes OLS

Continued on next page
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Citation Field/Lab Exp w/
Network?

Regression? Estimator(s) Used

Meghir, Mobarak, Mommaerts
and Morten (2022)

No Yes OLS

Carter, Laajaj and Yang (2021) Yes Yes OLS,
Hardy and McCasland (2021) Yes Yes OLS
Breza, Chandrasekhar, Mc-
Cormick and Pan (2020)

No (method) - -

Abel, Burger and Piraino
(2020)

No Yes OLS

Afridi, Dhillon, Li and Sharma
(2020)

Yes Yes OLS

Drago, Mengel and Traxler
(2020)

Yes Yes OLS

BenYishay, Jones, Kondylis
and Mobarak (2020)

Yes Yes OLS

Cai (2020) No Yes OLS, Propensity
Score Matching

Banerjee, Chandrasekhar, Du-
flo and Jackson (2019)

Yes Yes OLS

Kandpal and Baylis (2019) No (natural experi-
ment)

Yes OLS, IV

Benyishay and Mobarak (2019) Yes Yes OLS
Boltz, Marazyan and Villar
(2019)

Yes Yes OLS, Logit

Breza and Chandrasekhar
(2019)

Yes Yes OLS

Flory (2018) Yes Yes OLS
Chandrasekhar, Kinnan and
Larreguy (2018)

Yes Yes OLS

Cai and Szeidl (2018) Yes Yes OLS
Di Falco, Feri, Pin and Vollen-
weider (2018)

Yes Yes OLS

Gine and Mansuri (2018) No (cluster) Yes OLS, IV
Kessler (2017) No Yes OLS,
Cruz, Labonne and Querubin
(2017)

No Yes OLS, IV,

Barnhardt, Field and Pande
(2017)

Yes Yes OLS

Belloni, Chernozhukov,
Fernandez-Val and Hansen
(2017)

No (method) - -

Continued on next page
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Citation Field/Lab Exp w/
Network?

Regression? Estimator(s) Used

Pallais and Sands (2016) No Yes OLS
Alatas, Banerjee, Chan-
drasekhar, Hanna and Olken
(2016)

Yes Yes OLS

Nagavarapu and Sekhri (2016) No Yes OLS
Levine, Polimeni and Ramage
(2016)

No Yes OLS

Jakiela and Ozier (2016) Yes Yes OLS
Cai, De Janvry and Sadoulet
(2015)

Yes Yes OLS

Callen and Long (2015) No Yes OLS
Fafchamps and Vicente (2013) Yes Yes OLS, Propensity

score matching
Robinson (2012) No Yes OLS
Godlonton and Thornton
(2012)

Yes Yes OLS

Notes: The first column lists the citation of the paper. The second column indicates whether
the paper uses a field or lab experiment with a network structure. The third column indicates
whether the paper uses regression to estimate causal effects, and the fourth column lists the
specific estimator(s) used in the regression analysis. Methodological papers are marked with
“No (method)” in the second column and do not have the third and fourth columns filled in.
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