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Abstract. Individual fixed effects in network data are often key parameters of interest

in economic applications. Existing methods and applications for fixed effects estimation

predominantly assume conditional independence of outcomes, but this assumption is of-

ten not economically plausible. This paper examines fixed-effect regressions on network

data under a conditional dependence structure. We model errors as arising from both

node-level and edge-level shocks not fully captured by the fixed effects, inducing condi-

tional dependence among the errors. We show that the least squares estimator for fixed

effects is inconsistent due to a persistent term stemming from the dependence structure.

By exploiting information contained in residuals, we develop new inference methods for

individual fixed effects that incorporate the dependence. Additionally, we introduce a

new bias-correction approach for variance estimation under dependence. Our empirical

application using worker-firm matched data demonstrates the feasibility of our meth-

ods and highlights the significant impact of accounting for dependence in fixed-effects

estimation.
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1. Introduction

Network data—describing interactions among individuals—have become increasingly preva-

lent in applied economics, providing additional dimensions that are not available in

individual-level data. One important application of network data, given this extra di-

mensionality, is the identification and estimation of individual fixed effects to capture

unobserved heterogeneity that is crucial for understanding economic phenomena. For ex-

ample, Card et al. (2013) estimate the contribution of firm-level heterogeneity to wage in-

equality by leveraging worker mobility, which creates a network connecting firms and gen-

erates wage differences across them from which firm-level fixed effects can be extracted.1

Such network structures naturally induce cross-sectional dependence in outcomes, such as

firm-to-firm wage differences, because individual-level shocks are shared across networked

observations. This paper examines how dependence in network data affects the estima-

tion and inference of individual fixed effects and proposes a novel inference method that

explicitly accounts for the dependence structure.

Despite the networked structure of the data, most state-of-the-art econometric methods

for fixed effects estimation rely on the assumption that outcomes are independent, or at

most weakly dependent, conditional on fixed effects. For example, Engbom and Moser

(2022) estimate changes in workers’ and firms’ contributions to wage determination using

the methodology of Kline et al. (2020), which assumes conditional independence of wages.

However, the plausibility of this assumption is application-dependent. For example, in

worker-firm matched data, the wage a worker receives from firm j may be correlated with

the wage received by another worker at the same firm, perhaps due to a firm-level shock

such as the introduction of new technology that is not fully captured by time-invariant

firm fixed effects. Such shocks can induce correlation in wage differences between firm j

and other firms, which is ruled out by the conventional independence assumption. The

presence of network dependence can alter the behavior of fixed effect estimators and

invalidate current econometric approaches.

In this paper, we study fixed-effect regressions on network data with dependent errors.

The data are represented by a graph whose nodes correspond to individuals and whose

edges represent interactions; the unit of observation is an edge, and each edge has an

1Other examples include studies in labor: Abowd et al. (1999); Engbom and Moser (2022); Bonhomme
et al. (2023), education: Jackson (2013); Bacher-Hicks and Koedel (2023), health: Finkelstein et al. (2016,
2021), and trade: Bernard et al. (2022).
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associated scalar outcome. We consider a linear model in which an edge outcome is

driven by the difference between the incident nodes’ fixed effects, edge-level covariates,

and an edge-level error term that may be correlated across edges. For example, in labor

economics applications, the graph’s nodes are firms and an edge links a pair of firms

when a worker moves between them; the edge outcome is the wage change for that mover,

determined in part by the difference in the two firms’ fixed effects.

In this high-dimensional setting, the dependence across outcomes poses significant chal-

lenges for inference on individual fixed effects. To deal with these challenges and for ana-

lytical tractability, we assume that errors are generated by both node-level and edge-level

shocks, which are not controlled by the fixed effects, introducing conditional dependence

among the errors. This dependence structure allows for independence as a special case.

When evaluating the least squares estimator for fixed effects, we highlight the fun-

damental trade-off between the connectivity of the graph and the dependence structure.

The underlying graph must be well-connected to consistently estimate the fixed effects, as

otherwise, there is insufficient information to identify individual fixed effects. This issue,

termed "limited mobility" (e.g., Andrews et al., 2008; Bonhomme et al., 2023), is well

known in the literature. However, by allowing for dependence, we find a new counterveil-

ing effect. If the graph is too densely connected, the resulting dependence may become

too strong. This, in turn, hinders precise estimation of the fixed effects.

Our main results are as follows. First, we derive a first-order approximation for the

fixed effect estimator that features a persistent noise term stemming from the depen-

dence structure and hindering consistent estimation. We also show that the distribution

of this noise term can be identified and consistently estimated by exploiting information

contained in residuals from the regression. Using this result, we propose a non-standard

inference method for each individual fixed effect à la Conley and Taber (2011), who pro-

vide an inference method for treatment effects under small treatment group asymptotics.

Specifically, we propose confidence intervals for each individual fixed effect and a hypoth-

esis test for homogeneity of fixed effects across individuals within a specific group. We

show that these procedures are asymptotically valid. Our simulation exercises show that

our inference methods perform well in finite samples provided that the graph is relatively

well-connected.

Second, we introduce a new bias-correction method for moment estimation of individual

fixed effects under the dependence structure. Focusing specifically on the variance of fixed
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effects, we characterize the bias inherent in the plug-in estimator and propose a bias-

correction method that is consistent under the dependence structure. Additionally, we

show that the bias stemming from network dependence can dominate the bias addressed

by existing methods, which typically assume independence in errors (e.g., Andrews et al.,

2008; Kline et al., 2020; Bonhomme et al., 2023).

In our empirical application, we implement our inference and bias-correction methods

using worker-firm matched data from the Veneto Worker History (VWH) file. For in-

ference, we construct a novel confidence interval for the fixed effect of the most central

firm in the mobility network. For bias correction, we show that our method substantially

reduces the bias in the plug-in estimator of the variance of firm fixed effects. Our results

indicate that the dependence structure contributes significantly to the bias in variance

estimation, highlighting the importance of accounting for this dependence in empirical

analyses.

Our paper contributes to the literature on fixed effects estimation in network data

(Abowd et al., 1999; Andrews et al., 2008; Graham, 2017; Jochmans and Weidner, 2019;

Kline et al., 2020; Bonhomme et al., 2023). This body of work generally assumes condi-

tional independence of outcomes. The most closely related work is Jochmans and Weidner

(2019), which develops finite-sample theory and establishes asymptotic normality for fixed

effects estimators under the assumption of conditional independence. Jochmans and Wei-

dner (2019) also covers first-order approximations under a weak dependence structure. In

contrast, our paper introduces a strong dependence structure and provides a finite-sample

theory and inference method for individual fixed effects under this dependence structure.

The estimation of moments of individual fixed effects is also a key topic in this literature.

Andrews et al. (2008) provide a bias-correction approach for the estimation of variance

components under independence and homoskedasticity. Kline et al. (2020) extend this

method to accommodate heteroskedasticity, maintaining the independence assumption or

allowing at most weak cluster dependence. Our paper is the first to introduce a bias-

correction approach for variance components estimation under the strong dependence

structure, showing that the bias stemming from network dependence is non-negligible

and can dominate the bias addressed by the existing methods.

We are also connected to the literature on two-way/dyadic cluster-robust inference

(Cameron et al., 2011; Cameron and Miller, 2014; Tabord-Meehan, 2019; Verdier, 2020;

Davezies et al., 2021; Menzel, 2021; Chiang et al., 2024). While our dependence structure
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shares elements with these papers, our focus differs by centering on estimating individual

fixed effects, which are typically treated as nuisance parameters. We show that there

is a fundamental difficulty in conducting inference on individual fixed effects under the

dependence structure and develop new methods to address this issue.

2. Model

In this section, we introduce the data structure and the linear model we consider in this

paper. We then introduce the dependence structure of error terms, along with a useful

decomposition to understand the behavior of the estimator.

2.1. Setup. We consider network data based on a directed multigraph G = (V,E, s, t),

consisting of a node set V , an edge set E, and source and target functions s, t : E → V .

The node set V = {1, ..., n} contains n nodes, and the edge set E = {1, ...,m} contains m

edges. We use e to denote a typical edge in E. For each edge e ∈ E, the source function

s(e) specifies its origin node, while the target function t(e) specifies its destination node.

Because multiple edges can exist between the same pair of nodes, we define an edge

subset E(i,j) = E(j,i) ⊂ E as the set of edges whose origin or destination is either node i

or j:

E(i,j) = {e ∈ E : s(e) = i, t(e) = j or s(e) = j, t(e) = i} for each i, j ∈ V.

We allow E(i,j) to be empty when there are no edges between nodes i and j. By convention,

we do not allow self-loops, i.e., E(i,i) = ∅ for all i ∈ V . Additionally, for each i ∈ V , let

Es
i = {e ∈ E : s(e) = i} be the set of edges that originate from node i and Et

i = {e ∈ E :

t(e) = i} be the set of edges that terminate at node i. Then, Ei = Es
i ∪ Et

i is the set of

edges incident to node i. We define the out-degree of node i as dsi = |Es
i |, the number of

edges flowing out of node i, and the in-degree as dti = |Et
i |, the number of edges flowing

into node i. We refer to di = dsi + dti as the (total) degree of node i, which is the number

of edges incident to node i.

To illustrate the notation, consider the directed multigraph G shown in Figure 2.1, with

nodes V = {1, 2, 3, 4} and edges E = {1, ..., 7}. Focus on node 1: this node is the source

of edges 1 ∈ E(1,2) = {1}, 5, 6 ∈ E(1,3) = {5, 6, 7}, and the target of edges 4 ∈ E(1,4) = {4}

and 7 ∈ E(1,3). Consequently, we have

s(1) = s(5) = s(6) = t(4) = t(7) = 1,
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and so Es
1 = {1, 5, 6} and Et

1 = {4, 7}. The out-degree of node 1 is ds1 = 3, the in-degree

is dt1 = 2, and thus the degree is d1 = ds1 + dt1 = 5.

Figure 2.1. A directed multigraph G with n = 4 nodes and m = 7 edges.
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The following matrices associated with graph G are crucial for our analysis. First, the

n× n (symmetric) adjacency matrix A is defined as

Ai,j = |E(i,j)|,

for i, j ∈ V . Note that A is the adjacency matrix of the undirected graph derived from

the directed graph G by ignoring the direction of edges and counting the number of edges

between each pair of nodes. The degree of node i is also defined as di =
∑

j ̸=iAi,j. Let

D be the n× n diagonal matrix with degrees di placed along its diagonal.

Next, define the m× n incidence matrix B as follows:

Be,i =


1 if t(e) = i

−1 if s(e) = i

0 otherwise

for e ∈ E and i ∈ V . The incidence matrix B maps a node-level vector to an edge-level

vector of differences. For example, for a vector v ∈ Rn, the e-th element of Bv equals the

difference vt(e) − vs(e). Finally, these matrices are connected through the graph Laplacian

L, defined as

L = B′B = D−A.

As we will see later, the graph Laplacian plays a crucial role in our analysis.

2.2. Linear Model. Suppose that each edge e ∈ E is equipped with a scalar outcome

ye and a p-dimensional covariate Xe. These outcomes and covariates are stacked into the
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m-dimensional vector y = (ye)
m
e=1 and the m × p matrix X = (Xe)

m
e=1, respectively. We

consider the following linear model:

y = Bα+Xβ + ϵ,

where α = (αi)
n
i=1 is the n-dimensional vector of node-level fixed effects, β is the p-

dimensional vector of coefficients for the covariates, and ϵ = (ϵe)
m
e=1 is the m-dimensional

vector of edge-level errors. We assume that α is a fixed parameter or that the following

analysis is conditional on α without explicitly stating it. For now, we focus on estimation

of α and leave out covariates or equivalently treat β as known and redefine y −Xβ as

y2. Then, the model can be simplified to

y = Bα+ ϵ, (2.1)

which we refer to as our regression model.

Element-wise, the regression model (2.1) is written as

ye = αt(e) − αs(e) + ϵe,

for e ∈ E. Thus, each outcome is driven by the difference between the destination node

fixed effect αt(e) and the origin node effect αs(e). The following example illustrates how

such differences in fixed effects naturally arise in economic applications.

Example 1. (Two-Period AKM model): An important example of the model (2.1) arises

from the so-called “AKM” model (Abowd et al., 1999), which links worker and firm effects

to wages. Leaving out covariates, in this model, worker g is employed by firm J(g, t) at

time t, and the (log) wage of worker g at time t is given by

wg,t = βg + αJ(g,t) + ug,t, (2.2)

where βg is the worker fixed effect, αJ(g,t) is the firm fixed effect corresponding to the

worker’s employer at time t, and ug,t is the idiosyncratic error. Suppose that the economy

lasts for two periods, as considered in Section 2 in Kline et al., 2020. Then, ‘movers,’ i.e.,

workers g with J(g, 1) ̸= J(g, 2), form an edge e by transitioning from firm s(e) = J(g, 1)

2See Appendix A for a discussion on the case where β is unknown and needs to be estimated.
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to firm t(e) = J(g, 2). Then, we can write the wage difference as

wg,2 − wg,1︸ ︷︷ ︸
≡ye

= αJ(g,2) − αJ(g,1)︸ ︷︷ ︸
=αt(e)−αs(e)

+ug,2 − ug,1︸ ︷︷ ︸
≡ϵe

,

which corresponds to the model (2.1).

Theorem 1 of Jochmans and Weidner (2019) shows that when the graph G is connected

and the fixed effects α are normalized such that
∑

i∈V αidi = 0, the least squares estimator

for α is uniquely given by:

α̂ = (B′B)∗B′y = L∗B′y, (2.3)

where, for any n× n matrix C, C∗ denotes the pseudo-inverse defined as:

C∗ = D−1/2(D−1/2CD−1/2)+D−1/2

with + representing the Moore-Penrose inverse. Throughout the paper, we maintain such

assumptions on the graph structure and the normalization of fixed effects that validate

the estimator (2.3):

Assumption 1. The graph G is connected in the following sense: for any i, j ∈ V , there

exists a path between i and j on the undirected graph derived from G. Furthermore, the

fixed effects α are normalized such that
∑

i∈V αidi = 0.

If the graph is not connected, the normalization condition must be applied separately

to each connected component of the graph, and the subsequent analysis can then be

applied to each component individually. In practice, researchers typically focus on the

largest connected component if it constitutes a significant portion of the entire graph (e.g.,

Engbom and Moser, 2022).

The specific normalization employed in Assumption 1 is not crucial for our analysis,

and alternative normalizations can be used to obtain similar results. For example, we

could normalize the fixed effects by imposing
∑

i∈V αi = 0, which leads to a least squares

estimator with a different pseudo-inverse:

α̂ = (B′B)+B′y.
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Another common normalization is to set αi = 0 for a specific node i ∈ V . In this case,

the least squares estimator can be written as

α̂ = (B′
−iB−i)

−1B′
−iy,

where B−i is the m×(n−1) matrix obtained by removing the i-th column of B. Although

this normalization is often used in practice, it complicates theoretical analysis by breaking

the direct link to graph-related objects such as the graph Laplacian L. As discussed in

Kline (2024), one can nonetheless relate (B′
−iB−i)

−1B′
−i to L∗ using the results of Bozzo

(2013). We leave exploration of that connection to future work, focusing here on the

normalization in Assumption 1.

2.3. Dependence Structure. Next, we introduce a model of dependence for the edge-

level errors ϵe. Previous literature has typically imposed independence of the error terms

across edges, or at most weak dependence, meaning that the covariance matrix of ϵ is

nearly diagonal. However, since outcomes and errors are defined at the edge level, more

realistic dependence structures would allow for dependence between edges that share a

node, which is ruled out by the independence or weak dependence assumptions.

Here, we focus on a first-order strong dependence structure: we allow for sources of de-

pendence including (i) node-level shocks, which induce dependence between edges sharing

a node; and (ii) edge-level shocks, which induce dependence between edges in the same

edge subset. These shocks are shared across edges that either share a node or belong to

the same edge subset, respectively, and can generate strong dependence among the errors

at the first order.

Specifically, for each edge e ∈ E, we assume the following structure for ϵe:

ϵe = f(Us(e), Ut(e), Ve); E[ϵe] = 0, (2.4)

where f is a measurable function unknown to the researcher and Us(e), Ut(e) and Ve are

random vectors. Specifically, Us(e) and Ut(e) represent node-level shocks associated with

the source and target nodes of edge e, while Ve is an edge-level shock associated with edge

e. Since our analysis does not depend on their dimension, in the following, we treat each

Ui and Ve as one-dimensional random variables unless otherwise specified. Importantly,

we do not require prior knowledge of the form of f : it may be additive, interactive, or of

any other form.
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We impose the following structure on (2.4) to facilitate the analysis:

Assumption 2. The error term ϵ = (ϵe)
m
e=1 satisfies the following conditions:

(i) For each e ∈ E, E[ϵe] = 0 and maxe∈E E[ϵ4e] ≤ C < ∞ for some absolute constant

C > 0.

(ii) the node-level shocks Ui, i ∈ V are independently and identically distributed. The

edge-level shocks Ve satisfy the following independence structure:

Ve ⊥⊥ Ve′ if {s(e), t(e)} ̸= {s(e′), t(e′)}.

(iii) (Ui)
n
i=1 is independent of (Ve)

m
e=1

Assumption 2 imposes a specific dependence structure on the error terms ϵ. Part

(i) ensures that the errors are centered at zero and possess uniformly bounded fourth

moments. Part (ii) requires that the node-level shocks Ui be homogeneously distributed

across nodes, which is a strong restriction but simplifies the analysis. In contrast, the

edge-level shocks Ve are allowed to have heterogeneous distributions and may exhibit

correlation among them if two edges belong to the same edge subset E(i,j). For example,

one might write the covariance structure of Ve as follows:

Cov(Ve, Ve′) =


v2e if e = e′;

ve,e′ if e, e′ ∈ E(i,j) for some i, j ∈ V ;

0 otherwise,

where v2e and ve,e′ can be different across e, e′ ∈ E. Finally, part (iii), the mutual in-

dependence between the node-level shocks (Ui)i∈V and the edge-level shocks (Ve)e∈E, is

a common assumption in the network and two-way clustering literature (e.g., Graham,

2017; Menzel, 2021; Chiang et al., 2024). This assumption is not as restrictive as it might

seem because the function f in (2.4) can incorporate both Ui and Ve in a nonlinear fashion,

for example, by allowing them to interact with each other.

An important implication of the dependence structure in (2.4) under Assumption 2 is

that the error terms ϵ are dependent across edges either through (i) shared node-level

shocks Ui when two edges share a common node, or (ii) correlation induced by edge-level

shocks when two edges belong to the same edge subset E(i,j). Consequently, we can write
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the covariance structure of ϵ as

Cov(ϵe, ϵe′) =


σ2
e if e = e′;

σ2
e,e′ if e ̸= e′ and e, e′ ∈ Ei for some i ∈ V ;

0 otherwise

, (2.5)

for e, e′ ∈ E. Note that we are allowing for heteroskedasticity in the error terms, as the

variance σ2
e and covariance σe,e′ can differ across edges due to the heterogeneity of the

edge-level shocks Ve.

Note that the dependence structure in (2.4) does not capture higher-order correlations

among edges that are indirectly connected through common neighbors. While this re-

striction simplifies the analysis, it is flexible enough to accommodate a broad range of

first-order correlations, and it subsumes the traditional assumption of independence as a

special case.

We can connect the dependence structure in (2.4) to the AKM model in Example 1:

Example 2. (Two-Period AKM model, continued). Consider the setting described in

Example 1. Recall that the error term in this model is given by ϵe = ug,2 − ug,1 for a

mover g. We can interpret UJ(g,t) = (UJ(g,t),1, UJ(g,t),2) as a vector of firm-level shocks

affecting all workers employed by firm J(g, t) at time t, such as changes in management

practices or technology adoption. If a mover g is influenced by shocks from both the

origin and destination firms, possibly through human capital accumulation, then ug,2 may

depend on UJ(g,1),1 and UJ(g,2),2, while ug,1 may depend only on UJ(g,1),1. By treating Ve

as an idiosyncratic shock specific to the mover g, the innovation ϵe = ug,2 − ug,1 can be

expressed as a function of UJ(g,1),1, UJ(g,2),2, and Ve, which corresponds to the structure in

(2.4).

2.4. Decomposition. To isolate the impact of the dependence structure on the fixed

effect estimator α̂, we propose the following decomposition. For each e ∈ E, define the

functions:

τ se (·) ≡ E[ϵe|Us(e) = ·], τ te(·) ≡ E[ϵe|Ut(e) = ·].
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These functions capture, respectively, the effects of the origin and destination node-level

shocks Us(e) and Ut(e) on the error term ϵe. Note that they are not necessarily equal; the

function f in (2.4) can be asymmetric in its arguments Us(e) and Ut(e).

For example, suppose we have

ϵe = Ut(e)Us(e) + Ut(e) − 2Us(e) + 1,

and assume that E[Ui] = 1. Then we can show that

τ se (u) = −u+ 2 and τ te(u) = 2u− 1,

for any u ∈ U , the support of Ui. This example illustrates that the influence of the node-

level shocks on the error term can differ depending on whether the shock comes from the

origin or destination node.

To reduce dimensionality, we impose the following homogeneity on these functions:

Assumption 3. For any e, e′ ∈ E, we have

τ se = τ se′ ≡ τ s, τ te = τ te′ ≡ τ t.

This assumption ensures that τ te and τ se do not depend on the particular edge e. In

practice, under Assumption 2, this condition is satisfied in a broad class of models where

there is a certain separability between the node-level shocks Ui and the edge-level shocks

Ve.

A straightforward case is the additive separable model:

ϵe = Us(e) + Ut(e) + Ve,

which implies that τ s(u) = τ t(u) = u for any u ∈ U .

We can also allow for interactions between Ui and Ve, provided Ve is not nonlinearly

transformed. For instance, if we assume that E[Ve] = 1 and consider the model

ϵe = (Us(e) + Ut(e))× (1− Ve) + V 2
e − v2e ,

then it follows that τ s(u) = τ t(u) = u for any u ∈ U .
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In contrast, Assumption 3 is violated when Ve is nonlinearly transformed in the inter-

action. For example, if we have

ϵe = (Us(e) + Ut(e))V
2
e

then

E[ϵe|Us(e) = u] = E[ϵe|Ut(e) = u] = v2e ,

even though E[ϵe] = 0 when E[Ui] = 0.

Notice that we can decompose the error term ϵe as follows:

ϵe = τ s(Us(e)) + τ t(Ut(e)) + ϵe − τ s(Us(e))− τ t(Ut(e)).

This decomposition is useful because it expresses the error term ϵe as a sum of two

orthogonal components: the first component is the sum of the node-level shocks τ s(Us(e))

and τ t(Ut(e)), while the second component is the residual error term ϵe−τ s(Us(e))−τ t(Ut(e)).

In matrix form, we can write this decomposition as:

ϵ = Fsτ s + Ftτ t +
(
ϵ− Fsτ s − Ftτ t

)
,

where Fs and Ft are the m× n matrices defined as:

Fs
e,i =

1 if s(e) = i

0 otherwise
, Ft

e,i =

1 if t(e) = i

0 otherwise
,

and τ s = (τ s(Ui))i∈V and τ t = (τ t(Ui))i∈V are the n-dimensional vectors of node-level

origin and destination shocks, respectively.

Now we can decompose α̂ as follows:3

α̂ = L∗B′y = α+ L∗B′(Fsτ s + Ftτ t) + L∗B′(ϵ− Fsτ s − Ftτ t). (2.6)

The first term in (2.6) represents the true fixed effects, the second term is the bias term

stemming from the dependence structure, and the third term is the remaining noise term.

2.5. Variance Bound. Since the second term and third term in (2.6) are orthogonal to

each other, i.e., uncorrelated element-wise, the variance of α̂ is given by:

V ar(α̂) = L∗B′Ω1BL∗ + L∗B′Ω2BL∗, (2.7)

3Note that L∗Lα = α as L∗L works as a projection matrix on the null space of d and α is in the null
space of d: d′α = 0 under Assumption 1
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where

Ω1 = E[τ s(Ui)
2]Fs(Fs)′ + E[τ s(Ui)τ

t(Ui)](F
s(Ft)′ + Ft(Fs)′) + E[τ t(Ui)

2]Ft(Ft)′,

Ω2 = V ar(ϵ− Fsτ s − Ftτ t).

The first term in (2.7) captures the variance of the bias term, while the second term

captures the variance of the remaining noise term. Up to some constant, the first term is

bounded by

L∗B′Ω1BL∗ ≾ L∗B′FF′BL∗,

where F = abs(B), the signless incidence matrix. The matrix Ω2 in the second term is

block-diagonal:

Ω2 =


. . .

Ω(i,j)

. . .

 , Ω(i,j) =


σ2
ek

σek,el · · ·

σek,el σ2
el

· · ·
...

... . . .

− (E[τ s(Ui)
2 + τ t(Ui)

2])ι|E(i,j)|ι
′
|E(i,j)|,

for each (i, j) such that E(i,j) ̸= ∅. If the number of multiple edges between each pair of

nodes is bounded, then the second term in (2.7) is also bounded by

L∗B′Ω2BL∗ ≾ L∗B′BL∗ = L∗.

Hence, the upper bound on the variance of the fixed effect estimator is proportional to

V ar(α̂) ≾ L∗B′FF′BL∗ + L∗.

The second term is proportional to the variance in the absence of the dependence structure

and is analyzed in Jochmans and Weidner (2019): it is inversely proportional to the

connectivity of the graph. On the other hand, the additional variance in the first term is

proportional to the density of the line graph represented by

H ≡ FF′ − 2Im,

which is the adjacency matrix of the line graph derived from G: H has a non-zero entry if

two edges share a common node. Thus, the decomposition (2.7) highlights a fundamen-

tal trade-off: while a well-connected graph provides sufficient information for accurately

estimating individual effects, the strong dependence resulting from dense connections

hampers consistent estimation.
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To measure the connectivity, as in Jochmans and Weidner (2019), let λ2,L be the second

smallest eigenvalue of the normalized Laplacian

D−1/2LD−1/2.

Additionally, for each i ∈ V , define

hi =

(
1

di

∑
j ̸=i

A2
i,j

dj

)−1

,

which is a harmonic mean of the degrees of the neighbors of node i. These two objects re-

flect the graph’s connectivity: λ2,L captures the global connectivity, while hi characterizes

the local connectivity around node i.

For the dependence structure, let λn,F be the largest eigenvalue of

FF′ = H+ 2Im,

which quantifies the density of the graph by summarizing how edges are connected to

each other through common nodes.

Finally, let σ2
τ ≡ maxo∈{s,t} E[τ o(Ui)

2] and

σ̃2
n ≡ max

i,j
Ai,j max

e∈E(i,j)

(σ2
e − E[τ s(Ui)

2 + τ t(Ui)
2]),

which essentially bounds the largest eigenvalue of Ω2 in the second term of (2.7).

The following proposition provides a worst-case variance bound for the fixed effect

estimator α̂i:

Proposition 1. Under Assumptions 1-3, the variance of each individual fixed effect esti-

mator α̂i is bounded as follows:

V ar(α̂i) ≤
(
σ̃2
n + λn,Fσ

2
τ

)
×
{

1

di

(
1 +

1

λ2,Lhi

)
− 2

m

}
.

Proposition 1 highlights that the worst-case variance of the fixed effect estimator de-

pends critically on the interplay between graph connectivity (as captured by λ2,L) and

the density of the line graph (as measured by λn,F ). In particular, when the node-level

shocks Ui are degenerate (i.e., E[τ 2(Ui)] = 0), this bound recovers the variance bound

found in Jochmans and Weidner (2019) if we further assume that Ve is independently and

identically distributed across edges.
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It is well known in the spectral graph literature that (see Cvetković et al., 2007)

2min
k∈V

dk ≤ λn,F ≤ 2max
k∈V

dk,

Thus, the upper bound in Proposition 1 is of order

O(λn,F/di + λn,F/(diλ2,Lhi)),

which is O(1) if di ∝ λn,F and λ2,Lhi is bounded away from zero. This implies that

even when the graph is well-connected, the consistency of the fixed effect estimator is not

guaranteed in the worst-case scenario.

3. Asymptotic Theory

The variance decomposition in (2.7) and the finite-sample variance bound in Propo-

sition 1 help clarify the behavior of the fixed effect estimator under the dependence

structure. Notably, the estimator can be inconsistent even when the graph is well-

connected—contrasting with the consistency results under independence (see Jochmans

and Weidner, 2019). However, the finite-sample theory above provides only a worst-case

bound and does not sharply characterize the estimator’s behavior. Therefore, in this sec-

tion, we develop a first-order approximation for the fixed effect estimator and propose a

new inference method for individual fixed effects under an asymptotic framework, where

the sequence of graphs G1,G2, . . . grows both locally around each node of interest and

globally in terms of the number of nodes and edges.

3.1. First-Order Approximation. We begin with the following first-order approxima-

tion for the fixed effect estimator. The idea is to decompose the estimator as follows:

α̂−α = D−1B′ϵ+D−1A(α̂−α)︸ ︷︷ ︸
≡r

.

This decomposition is algebraically derived by leveraging the restriction d′α = 0.4 The

remainder term r aggregates the deviation of the fixed effect estimator from the true

effects, and it will be shown to be negligible, depending on both the connectivity of the

graph and the dependence structure as seen in the variance bound in Proposition 1.

4See the proof for Theorem 4 in Jochmans and Weidner (2019)

16



Element-wise, the first term of the decomposition for node i is given by

1

di

∑
e∈Ei

Be,iϵe.

Thus, each individual fixed effect estimator α̂i is locally driven by the average of the error

terms ϵel over the set Ei of edges incident to node i.

We can further decompose the estimator as follows:

α̂−α = D−1B′(Fsτ s + Ftτ t) +D−1B′(ϵ− Fsτ s − Ftτ t) + r. (3.1)

The first term on the right-hand side of (3.1) can be expressed asdti
di
τ t(Ui)−

dsi
di
τ s(Ui) +

1

di

∑
e∈Es

i

τ t(Ut(e))−
1

di

∑
e∈Et

i

τ s(Us(e))


i∈V

.

Note that the term

dti
di
τ t(Ui)−

dsi
di
τ s(Ui)

is generally persistent as di increases as at least one of dti/di or dsi/di converges to a

non-zero constant. On the other hand, since τ±(Uj) has mean zero, the averages

1

di

∑
e∈Es

i

τ t(Ut(e)),
1

di

∑
e∈Et

i

τ s(Us(e))

are of smaller order than the persistent term. Furthermore, the second and third terms

in (3.1) are also of smaller order than the persistent term if the graph is well-connected.

The following assumption ensures that the remaining terms are negligible and simplifies

the asymptotic analysis:

Assumption 4. The number of edges between each pair of nodes is absolutely bounded,

i.e., there exists an absolute constant C > 0 such that maxi,j∈V |E(i,j)| ≤ C for all n ∈ N.

Assumption 4 can be relaxed to allow for a growing number of edges between each pair

of nodes, provided that the growth is sufficiently slow. For example, if node i is of interest

and di → ∞, we can allow for maxi,j∈V |E(i,j)| → ∞ as long as the growth rate is slower

than di. Also, we can force this assumption to hold by randomly removing a subset of

multiple edges between each pair of nodes such that the number of remaining edges is

bounded.
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The following result summarizes the above discussion and provides a first-order approx-

imation for the fixed effect estimator α̂:

Theorem 1. Under Assumptions 1-4, for each i ∈ V , we have

α̂i − αi =
dti
di
τ t(Ui)−

dsi
di
τ s(Ui) +Op

(√
λn,F

diλ2,Lhi

)
,

as di → ∞.

Theorem 1 shows that the fixed effect estimator is approximated by the true fixed effect

plus a mean-zero noise term, expressed as a weighted difference in the origin and destina-

tion effects, τ±(Ui). Thus, the estimator is unbiased but inconsistent. The inconsistency

arises because the individual fixed effect estimator is, approximately, a local average of

the error terms in which the individual-level random effects are not fully averaged out.

That is why the noise term is closely related to the proportions of edges where node i

appears as an origin (dsi/di) versus as a destination (dti/di). Since the noise does not van-

ish, this result is consistent with the intuition that the fixed effect estimator is potentially

inconsistent even in a well-connected graph due to the dependence structure.

Also note that Theorem 1 generalizes Theorem 4 in Jochmans and Weidner (2019),

which establishes that the fixed effect estimator is consistent for αi under a weak de-

pendence structure. In Jochmans and Weidner (2019), this weak dependence structure

is characterized by requiring that the largest eigenvalue of E[ϵϵ′] remains bounded by a

positive absolute constant. In our framework, however, the dependence structure is suffi-

ciently strong that the largest eigenvalue of E[ϵϵ′] diverges with di. This divergence leads

directly to the inconsistency of the fixed effect estimator in our setting.

The remainder term is negligible if the graph is well-connected, such that λ2,L does not

decay too quickly and λ2,Lhi → ∞, and the graph itself grows sufficiently slowly, ensuring

that λn,F/di does not grow too rapidly as di increases. In that case, we have

α̂i − αi =
dti
di
τ t(Ui)−

dsi
di
τ s(Ui) + op(1),

so that the fixed effect estimator is consistent for

αi +
dti
di
τ t(Ui)−

dsi
di
τ s(Ui).
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A sufficient condition for this is that

λn,F/(diλ2,Lhi) → 0.

This condition is satisfied in the following examples:5

Example 3. Suppose that G is a complete graph. Then, di = n − 1, hi = n − 1 for each

i ∈ V and λn,F = 2(n− 1), λ2,L = 1. Thus, λn,F/(diλ2,Lhi) = 1/(n− 1) → 0 as n → ∞.

Example 4. Suppose that G is an Erdős–Rényi random graph with edge probability pn =

clog(n)/n for some constant c > 1. Then, di/ log(n) → c, hi/ log(n) → c for each i ∈ V

and λn,F/ log(n) → c, λ2,L → 1 almost surely as n → ∞. Thus, λn,F/(diλ2,Lhi) ∼

1/ log(n) → 0 almost surely as n → ∞.

A counterexample that violates the condition λn,F/(diλ2,Lhi) → 0 is given by the fol-

lowing:

Example 5. Suppose that G is a stochastic-block random graph composed of two blocks

of size n/2. Let the intra-block edge probability be pn = p0 log(n)/n for some constant

p0 > 2, and let the inter-block edge probability be qn = q0/n for some constant q0 < p0.

Then, for each i ∈ V , di/ log(n) → p0/2 and hi/ log(n) → p0/2, and λn,F/ log(n) →

p0/2, λ
−1
2,L×log(n) = O(1) almost surely as n → ∞. Thus, we have λn,F/(diλ2,Lhi) = O(1)

almost surely as n → ∞.6

In Example 5, the graph is not well-connected: the connections between the two blocks

are sparse, making it easier for the graph to break into two disconnected components as n

increases. In contrast, within each block the graph is well-connected, and the dependence

structure remains non-negligible. Consequently, the first-order approximation in Theorem

1 may fail under such conditions. Indeed, without the dependence structure, λn,F would

be replaced by 1, so even with the stochastic-block structure, the fixed effect estimator

would be consistent for αi as 1/(diλ2,Lhi) → 0 as di → ∞.

5The dependence measure λn,F can be conservative in highly heterogeneous graphs where a few nodes
have a large number of links. Improving this bound will be an important direction for future work.
6This result is based on Deng et al. (2021), who characterized the asymptotic behavior of λ2,L in the
stochastic-block random graphs
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3.2. Inference.

The first-order approximation in Theorem 1 suggests a potential approach for performing

inference on the individual fixed effect αi by estimating the distribution of

dti
di
τ t(Ui)−

dsi
di
τ s(Ui).

However, the challenge is that we must either directly estimate the differences across nodes

or estimate each τ±(Ui) separately. This is in general not feasible without additional

assumptions as αi is unknown and only the sum τ t(Ui) + τ s(Ui) can be consistently

estimated.

To illustrate this point, consider the residual ϵ̂ defined as

ϵ̂ ≡ y −Bα̂ = MBy,

where MB = Im −BL∗B′ projects onto the orthogonal complement of the column space

of B. For each i ∈ V , let ci be defined as

ci =
1

di
f ′

iMBf i,

where f i is the i-th column of F. Note that ci ∈ [0, 1]. Heuristically, ci is a measure of

balance between the in-flow and out-flow of edges incident to node i: if dti − dsi is close to

zero, then ci is close to one, while if |dti − dsi | is close to di, then ci is close to zero. In fact,

we can show that

ci ∼ 1−
(
dti − dsi

di

)2

,

when the graph is well-connected with large λ2,Lhi.

By locally averaging the residuals, we can obtain the following:

Proposition 2. Under Assumptions 1-4, for each i ∈ V , we have

1

di

∑
e∈Ei

ϵ̂e = ci ×
τ t(Ui) + τ s(Ui)

2
+Op

(√
1

di

)
,

as di → ∞.

Proposition 2 shows that if node i has sufficient balance between its in-flow and out-

flow of edges, the local average of the residuals ϵ̂e for edges incident to node i contains
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information about the average (τ t(Ui) + τ s(Ui))/2. Specifically, if ci > 0, we have

τ̂i ≡
1

dici

∑
e∈Ei

ϵ̂e =
τ t(Ui) + τ s(Ui)

2
+Op

(√
1

c2i di

)
. (3.2)

Thus, as long as the balance measure ci does not converge to zero quickly, we can consis-

tently estimate the average (τ t(Ui) + τ s(Ui))/2. An extreme case would be when ci = 0,

which occurs when dti = 0 or dsi = 0. In this case, the local average of the residuals is

exactly zero and uninformative about the average (τ t(Ui) + τ s(Ui))/2.

Remark 1. The convergence rate of τ̂i in (3.2) is notable because it does not depend on

λn,F or λ2,Lhi. In other words, the convergence rate is determined solely by the balance

and the number of edges incident to node i, regardless of the overall connectivity of the

graph or the strength of the dependence structure. This implies that even if the graph is not

well-connected and the dependence structure is strong—so the first-order approximation in

Theorem 1 may not hold, as in Example 5—we can still consistently estimate the average

(τ t(Ui) + τ s(Ui))/2 as long as the edges incident to node i are sufficiently balanced.

As argued above, the average (τ t(Ui) + τ s(Ui))/2 is not sufficient for performing in-

ference on the individual fixed effect αi because essentially we have three unknowns

(αi, τ
t(Ui), τ

s(Ui)) for two equations:

α̂i ∼ αi +
dti
di
τ t(Ui)−

dsi
di
τ s(Ui)

τ̂i ∼
τ t(Ui) + τ s(Ui)

2
.

To facilitate inference, we impose the following additional structure on the τ±(·) functions:

Assumption 5. For any u ∈ U , we have

τ s(u) = τ t(u) ≡ τ(u).

Assumption 5 is satisfied in a broad class of models where the dependence structure is

symmetric in Us(e) and Ut(e), such as the additive separable model or the interactive model

discussed above following Assumption 3. Importantly, this assumption is weaker than

requiring symmetry of f in (2.4) with respect to the origin and destination shocks, i.e.,

f(u, u′, v) = f(u′, u, v) for all u, u′, v in their supports. The following example illustrates
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that Assumption 5 can hold even when f is not symmetric in Us(e) and Ut(e): If

ϵe = f(Us(e), Ut(e), Ve) = U2
s(e)Ut(e) − U2

s(e) + Us(e) − 1,

with E[Ui] = E[U2
i ] = 1, then

τ s(u) = τ t(u) = u− 1

for all u ∈ U , even though (Us(e), Ut(e)) = (2, 0) and (0, 2) yield ϵe = −5 and 1, respectively,

which breaks the symmetry of f . Thus, we can allow for asymmetric responses of the

error term to the origin and destination shocks, while still satisfying Assumption 5.

When Assumption 5 is violated, ϵe is necessarily asymmetric in Us(e) and Ut(e). For

example, consider the model where

ϵe = Us(e)Ut(e) + Ut(e) − 2Us(e),

and suppose E[Ui] = 1. In this case, one can verify that

τ s(u) = −u, τ t(u) = 2u,

so that τ s(u) ̸= τ t(u) for any u ∈ U except for u = 0.

Remark 2. Instead of imposing Assumption 5, we may consider alternative normalization

on the τ±(·) functions, such as τ t(·) = 0 or τ s(·) = 0. In such cases, the non-zero function

can be denoted by τ and inference can proceed similarly as below. More generally, we can

consider the case where there is a linear relationship between τ t(·) and τ s(·), allowing us

to set τ(·) = τ t(·) and τ s = cτ(·) or τ(·) = τ s(·) and τ t = cτ(·) for some constant c > 0.

See Appendix B for inference under such a setting.

Under Assumption 5, Proposition 2 implies that we can consistently estimate τ(Ui) as

follows:

τ̂i ∼ τ(Ui),

if c2i di → ∞ as di → ∞. Moreover, under Assumption 5, Theorem 1 implies that

α̂i − αi ∼
dti − dsi

di
τ(Ui),
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provided that λn,F/(diλ2,Lhi) → 0 as di → ∞. Thus, we can leverage the consistency of τ̂i

to estimate the distribution of τ(Ui) and to perform inference on individual fixed effects.

Remark 3. Since τ̂i is a consistent estimator for τ(Ui), one might consider correcting

the fixed effect estimator as follows:

α̂i −
dti − dsi

di
τ̂i ∼ αi.

For point estimation, this correction would yield a consistent estimator for αi if the re-

mainder term in Theorem 1 is negligible and i has sufficient balance. For inference,

however, we do not pursue this approach for two reasons. First, this correction is not

feasible for every node i ∈ V when ci = 0 or close to zero, as τ(Ui) cannot be consistently

estimated in these cases. This issue is particularly relevant when nodes of interest, or a

non-negligible number of nodes, have ci close to zero, as observed in the empirical applica-

tion in Section 6. Second, the correction does not guarantee asymptotic normality, since

the remainder term r in (3.1) can be dominant with order Op(
√

λn,F/(diλ2,Lhi)), and the

central limit theorem does not directly apply to this term. Moreover, estimating the stan-

dard error of the corrected estimator is not straightforward without further assumptions

on the distribution of (Ve)e∈E. These considerations motivate the development of a new

inference method based on the empirical distribution of τ̂i for i ∈ Cn, as defined below.

For this purpose, we impose the following assumption on the distribution of τ(Ui):

Assumption 6. τ(Ui) has a continuous cumulative distribution function.

Assumption 6 ensures that the distribution of τ(Ui) is well-behaved. This excludes

degenerate cases and guarantees that the dependence structure remains relevant as the

graph size n increases. Since τ(Ui) is mean-zero, degeneracy would imply τ(Ui) = 0

almost surely for all i ∈ V , in which case the standard inference results from Jochmans

and Weidner (2019) would apply.

We define the set of nodes useful for estimating τ as Cn ≡ {i ∈ V : ci > c}, where c > 0

is an absolute constant. Let Fτ be the cumulative distribution function of τ(Ui) and F̂n,τ

be the empirical distribution function of τ̂i for i ∈ Cn, defined as

F̂n,τ (t) ≡
1

|Cn|
∑
i∈Cn

I (τ̂i ≤ t) ,
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where I(·) is the indicator function. Also, define the following object to globally control

the estimation errors for |Cn| nodes:

ηn ≡ 1

|Cn|
∑
i∈Cn

1

di
,

which tend to zero as n → ∞ provided that nodes in Cn have growing di on average.

Then, we have the following result:

Theorem 2. Under Assumptions 1-6, if |Cn| → ∞ and ηn → 0 as n → ∞, we have

sup
t∈R

|F̂n,τ (t)− Fτ (t)| →p 0,

as n → ∞.

The additional conditions |Cn| → ∞ and ηn → 0 ensure that there are enough infor-

mative nodes to reliably estimate the distribution of τ(Ui). These conditions are satisfied

in many graphs with growing degrees, where nodes have sufficient in-flow and out-flow

of edges. For example, in Examples 3-5, for each edge, if source and target nodes are

assigned independently at random with probability q ∈ (0, 1) and 1− q, respectively, then

the conditions are likely satisfied when q is an absolute constant.

Theorem 2 is useful for conducting inference on individual fixed effects in a manner

similar to that of Conley and Taber (2011), who developed a non-standard inference

under small treatment group asymptotics. Noting that(
dti − dsi

di

)−1

(α̂i − αi) ∼ τ(Ui),

for i ∈ V such that |dti − dsi | > dic for some absolute constant c > 0, we can construct

a confidence interval for αi by inverting the test based on F̂n,τ . Specifically, for a given

confidence level 1 − α, let ĉα/2 and ĉ1−α/2 be the (α/2)-th and (1 − α/2)-th quantiles of

F̂n,τ , respectively. Then, the 1− α confidence interval for αi is given as

CIi,1−α ≡


[
α̂i −

(
dti−dsi
di

)
ĉ1−α/2, α̂i −

(
dti−dsi
di

)
ĉα/2

]
if dti − dsi > 0;[

α̂i −
(

dti−dsi
di

)
ĉα/2, α̂i −

(
dti−dsi
di

)
ĉ1−α/2

]
if dti − dsi < 0.

(3.3)

Another useful application of Theorem 2 is joint hypothesis testing for individual fixed

effects α. For example, consider testing the null hypothesis that a subset V0 of individuals
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share the same fixed effect:

H0 : αi = αj for all i, j ∈ V0 versus H1 : αi ̸= αj for some i, j ∈ V0.

We can test this hypothesis using the following test statistic:

T = α̂′
V0
Mn0α̂V0 (3.4)

where αV0 = (αi)i∈V0 , n0 = |V0|, and Mn0 is the demeaning matrix of size n0. Under the

null hypothesis,

α′
V0
Mn0αV0 = 0,

and the distribution of T can be approximated by simulating α̂V0 as ((dti−dsi )/di×τ
(m)
i )i∈V0

for M repetitions, where each τ
(m)
i is drawn from the empirical distribution F̂n,τ . Let ĉT1−α

denote the (1 − α) quantile of the simulated distribution of T under the null. The test

rejects H0 if T > ĉT1−α.

More generally, we can test linear hypotheses of the form H0 : Rα = 0 for some known

matrix R using a similar approach and constructing the test statistic as gn(α̂V0) for some

known function gn(·) such that the null distribution can be simulated from F̂n,τ .

The following result establishes the asymptotic validity of the confidence interval in

(3.3) and the test based on the statistic T in (3.4):7

Proposition 3. Suppose that the conditions of Theorem 2 hold. Suppose also that Fτ is

strictly increasing around quantiles of interest. For each i ∈ V such that (dti − dsi )/di =

O(1) and λn,F/(diλ2,Lhi) → 0 as n → ∞, we have

lim
n→∞

P (αi /∈ CIi,1−α) = α.

Also, if for each i ∈ V0, (dti − dsi )/di → c±i , mini∈V0 |c±i | > 0, maxi∈V0 λn,F/(diλ2,Lhi) → 0

as n → ∞, and n0 is fixed, then

lim
n,M→∞

P(T > ĉT1−α) = α,

under the null hypothesis that αi = αj for all i, j ∈ V0.

7Our result here only establishes point-wise asymptotic validity. Establishing uniform asymptotic validity
over a class of DGPs and graph sequences is an important direction for future work.
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Remark 4. The proposed inference methods rule out the case where nodes of interest have

almost perfect balance between their in-flow and out-flow of edges, i.e., dti ∼ dsi . In such

cases, we have

α̂i − αi ∼ 0

and little information on τ(Ui) remains in α̂i. The confidence interval in (3.3) and the

distribution of the test statistic T will be degenerate, leading to unreliable inference. If

all nodes of interest have such balance, we can at least acknowledge that the estimates for

these nodes are consistent without correcting as done in Remark 3.

4. Variance Components Estimation

In the previous sections, we have focused on the estimation and inference of individual

fixed effects α. However, in empirical applications, researchers are often interested in

distributional properties of the fixed effects. For example, Card et al. (2013) estimate

the sample variance of firm fixed effects in the AKM model to assess the contribution of

workplace heterogeneity to rising wage inequality. In this section, we focus on estimating

the sample variance of the fixed effects α and address the bias in the sample variance

estimator that arises from the dependence structure.

4.1. Estimation.

Our parameter of interest is the sample variance of α, given by

Vα ≡ 1

n

∑
i∈V

(αi − ᾱ)2

=
α′Mnα

n
,

where Mn = In − 1/n × ιnι
′
n is the demeaning matrix, ιn is an n-dimensional vector of

ones, and ᾱ = ι′nα/n is the average of α. We can estimate Vα by plugging in α̂ for α:

V̂α =
α̂′Mnα̂

n
.
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It is well known that V̂α is biased upward due to the estimation error in α̂ even in cases

where dependence is ruled out (Andrews et al., 2008). To see this, from (2.3), we have

E[V̂α] = Vα +
E[ϵ′BL∗MnL

∗B′ϵ]

n

= Vα +
tr(BL∗MnL

∗B′E[ϵϵ′])
n

. (4.1)

The bias term in (4.1) is nonzero in general and known as "limited mobility bias" in the

literature. As an illustration, suppose that ϵ is independent and identically distributed.

Then, the bias term simplifies to

E[ϵ2e]×
tr(MnL

∗)

n
,

which is inversely proportional to the connectivity of the graph.

4.2. Bias Correction.

To correct the bias in V̂α, several bias correction methods have been proposed in the

literature. When ϵ is independent and identically distributed, the bias can be estimated

by the following formula (Andrews et al., 2008):

σ̂2 × tr(MnL
∗)

n
,

where σ̂2 is an estimator consistent for E[ϵ2e]. Kline et al. (2020) extends this bias correction

method to accommodate the case where ϵ is independent but not identically distributed.

In our setting, however, ϵ is not independent, so the above methods are not directly

applicable. To address this issue, note that we can decompose the covariance matrix of ϵ

as

E[ϵϵ′] = Ω1 +Ω2,

as in (2.7). Thus, under Assumption 5, the bias term in (4.1) can be rewritten as:8

E[τ(Ui)
2]× tr(BL∗MnL

∗B′FF′)

n
+

tr(BL∗MnL
∗B′Ω2)

n
. (4.2)

Here, the first term in (4.2) is the new bias term due to the node-level dependence struc-

ture, while the second term corresponds to the limited mobility bias in the literature.

8Since the distributions of τ t(Ui) and τ s(Ui) are not separately identified as shown above, in this section
we focus on the symmetric case and maintain Assumption 5.
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Note that when there are few multiple edges between any given pair of nodes, the second

term is proportional to tr(MnL
∗).

Heuristically, we can assess relative severity of the new bias term compared to the

second term by comparing

tr(BL∗MnL
∗B′FF′)

n
and

tr(MnL
∗)

n
.

These quantities can be computed from the graph structure. In a well-connected graph,

the latter will be small in comparison to the former, so the bias arising from the depen-

dence structure will dominate. Conversely, in graphs that are not well-connected, both

terms will be significant.

Hypothetically, we can estimate the bias term in (4.2) by estimating E[τ(Ui)
2] and Ω2

separately. In particular, we can estimate E[τ 2(Ui)] via the following estimator:

σ̂2
τ =

1

|Cn|
∑
i∈Cn

(
1

dici

∑
e∈Ei

ϵ̂e

)2

,

whose consistency is anticipated by Proposition 2. However, estimating Ω2, without im-

posing additional restrictions on the dependence structure or heteroskedasticity is chal-

lenging as α̂ is not, in general, a consistent estimator of α, and the correlation structure

within each block of Ω2 is too flexible to estimate.

Instead of estimating Ω2 directly, we propose the following bias-corrected estimator for

Vα by correcting only the first term in (4.2):

V̂ bc
α = V̂α − σ̂2

τ ×
tr(BL∗MnL

∗B′FF′)

n
.

We need the following additional regularity conditions to establish the consistency of

V̂ bc
α :

Assumption 7. The following conditions hold:

(i) The fixed effects α are uniformly bounded, i.e., supi∈V |αi| < C for some absolute

constant C > 0.

(ii) The following quantities are o(1) as n → ∞:√
λn,F

n

∑
i∈V

1

di
,

√
η
n
λn,F

n

∑
i∈V

1

di
,
λn,F

n

∑
i∈V

1

di λ2,L hi

.
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Part (i) of Assumption 7 excludes the case in which some nodes have unbounded fixed

effects, a relatively mild requirement. Parts (ii) is technical conditions that ensure the

bias arising from the dependence structure persists (so our bias correction is essential),

while the bias from the remainder of the variance–covariance matrix remains relatively

small. These conditions hold, for example, in well-connected, homogeneous graphs such

as the Erdős–Rényi random graph of Example 4, but fail if the graph is poorly connected

or if edges are concentrated among only a few node pairs.

Then, we have the following consistency result for the bias-corrected estimator:

Theorem 3. Under Assumptions 1-5 and 7, if |Cn| → ∞ and ηn → 0 as n → ∞, we have

V̂ bc
α − Vα →p 0,

as n → ∞.

Note that although Theorem 3 establishes the consistency of the bias-corrected esti-

mator V̂ bc
α , in finite sample, it is typically still biased upward as we have not corrected

the second term in (4.2). Nonetheless, our finding suggests that ignoring the bias arising

from the dependence structure can be more severe than ignoring the second term when

the graph is well-connected and homogeneous.

To account for the finite-sample bias, we propose the following rule of thumb modifica-

tion to the bias-corrected estimator:

V̂ bc,mod
α = V̂α − σ̂2

τ ×
tr(BL∗MnL

∗B′FF′)

n
−max{0, σ̂2 − 2σ̂2

τ} ×
tr(MnL

∗)

n
,

where

σ̂2 =
1

m

∑
e∈E

ϵ̂2e.

The second term in V̂ bc,mod
α serves as the bias correction term for the second term in

(4.2) when the errors are assumed to be homoskedastic and the within-block correlation

is neglected. If the block correlation induces positive bias, then this modification will be

conservative.
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Also, note that σ̂2 is not consistent for E[ϵ2e] in general. However, if the errors are

homoskedastic, it can be approximated by

σ̂2 ∼ E[τ 2(Ui)]×

[
4∑

i∈V dti

∑
i∈V

dtid
s
i

di
− 2

]
+ E[ϵ2e] ≤ E[ϵ2e]

so that σ̂2 is downward biased relative to E[ϵ2e], leading to a conservative modification of

the bias-corrected estimator.

Remark 5. The rule-of-thumb modification may result in over-correction, especially when

the errors are heteroskedastic, as observed in the simulation results in the next section.

This is because the approximation of σ̂2 above assumes homoskedasticity. Using a more

robust estimator for σ̂2, such as the one proposed by Kline et al. (2020), could potentially

improve the performance of the modified estimator. We leave a detailed investigation of

this approach to future work.

We can compare our bias-corrected estimators with those previously proposed in the

literature. The key difference is that our estimator corrects for bias by targeting the

first term in (4.2), which arises from the node-level dependence structure, and it does so

without requiring the independence assumption on the error term ϵ. By contrast, existing

bias-corrected estimators, such as those of Andrews et al. (2008) and Kline et al. (2020),

correct only for the second term in (4.2) and are consistent if ϵ is independent.9

For example, Andrews et al. (2008)’s bias-corrected estimator is given by

V̂ a
α = V̂α − σ̂2 × tr(MnL

∗)

n
.

Thus, if the graph is not well-connected and the contribution of the node-level shocks

(i.e., E[τ 2(Ui)]) is small relative to E[ϵ2e], this correction may work well as the first term

in (4.2) may be negligible.

However, if the node-level dependence structure is strong with significant E[τ 2(Ui)] rel-

ative to E[ϵ2e], then the bias stemming from this dependence structure becomes dominant,

as shown in Theorem 3. In this scenario, the Andrews et al. (2008)-type bias correction,

which ignores this component, will be inconsistent. Similarly, the bias correction method

proposed by Kline et al. (2020), which also hinges on the independence of ϵ or weak

9While Kline et al. (2020) permits weak dependence in their model, their framework does not accommo-
date the strong dependence structure we consider here.
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dependence, suffers from the same limitation and will generally be inconsistent when the

dependence structure is strong.

5. Simulation

In this section, we conduct a simulation study to illustrate our inference procedure and

the finite-sample properties of the bias-correction method.

5.1. Design.

We first generate an undirected graph G = (V,E) with |V | = n nodes from the stochastic

block model discussed in Example 5. Recall that the stochastic block model is a random

graph model where nodes are partitioned into K blocks, and edges are formed between

nodes in the same block with probability pn′ and between nodes in different blocks with

probability qn′ . We set pn = 10 log(n)/n and qn = 2/(log(n)n) for each n. We then extract

the largest connected component from the generated graph.10 We vary the number of

blocks K = 1, 2 and the number of nodes n = 500, 1000, 2500, and 5000 to compare the

performance of our inference procedure under different graph structures.

Given the connected graph G = (V,E), we generate and fix the true fixed effects α as

follows:

vi ∼ U [0, 1] for i ∈ V ;

α = v − (v′d/d′d)× d

which ensures that d′α = 0.

We generate the error terms ϵ according to

ϵe = Us(e) + Ut(e) + Ve for e ∈ E,

where Ui ∼ N(0, 1), and

Ve ∼ N(0, 1 + |αs(e)|+ |αt(e)|)

independently. Note that this structure satisfies Assumptions 3 and 5 with τ(Ui) = Ui for

each i ∈ V and allows for heteroskedasticity in Ve.

10In our simulation setting, randomly generated graphs are typically connected, and even if they are not,
the largest connected component covers a large proportion of the nodes. Thus, we do not distinguish the
original G from the largest connected component, and we keep denoting it as G for simplicity.
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Using α, we randomly assign the in-flow and out-flow of each edge e ∈ E(i,j) as follows:

t(e) = i with probability
|αi|

|αi|+ |αj|
,

independently for each edge e ∈ E(i,j). We can interpret this assignment as a process

where a node with large effect is more likely to attract the in-flow of an edge. Then, with

(V,E, s, t), we can construct the incidence matrix B and generate the outcome vector

according to (2.1). For each iteration, we compute the least squares estimator α̂ and the

empirical distribution of τ(Ui) using Theorem 2, by setting Cn = {i ∈ V : ci > 0.2}.

Table 1 reports the degree distribution of the generated graphs. For each n, the gen-

erated graphs exhibit a balanced degree distribution, avoiding extremes of sparsity and

density, regardless of the underlying generating process.

Table 2 reports the global measures of the generated graphs. The connectivity measure

λ2,L is well bounded away from zero for K = 1, while it converges to zero for K = 2,

reflecting that the latter graph is much easier to partition into separate components. In

both models, the dependence measure λn,F increases slowly as n increases. Moreover, more

than 90% of the nodes are in the set Cn, suggesting there are enough informative nodes to

estimate the distribution of τ(Ui). The convergence measure ηn approaches zero for both

models, indicating that Theorem 2 provides a good approximation of the distribution

of τ(Ui) for large n. The other convergence measure, Hn ≡ λn,Fn
−1
∑

i∈V d−1
i λ2,Lh

−1
i ,

converges to zero for K = 1 but not for K = 2, reflecting that the stochastic block model

with K = 2 is not well-connected while the dependence structure remains non-negligible.

5.2. Results: Inference.

In this exercise, we construct 95% confidence intervals for αi based on (3.3) and evaluate

the coverage probability of these confidence intervals. We also construct 95% confidence

intervals for αi based on Theorem 5 in Jochmans and Weidner (2019), which shows the

asymptotic normality of α̂ when ϵ are independent. This procedure is repeated 2000 times

to evaluate the coverage probability. See Appendix C for additional simulation results,

including results for joint hypothesis tests discussed above.

Table 3 summarizes the Monte Carlo simulation results. The confidence intervals based

on (3.3) achieve coverage probabilities close to the nominal 95% level for both K = 1 and

K = 2. While this is expected for K = 1, it is notable for K = 2, where the graph is

not well-connected and H1 = λn,F/(d1λ2,Lh1) does not converge to zero, so the first-order
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Table 1. Degree Distributions of the Generated Graphs

min Q1 Q3 max mean
Panel A: K = 1

n = 500 87 110 123 148 116.944
n = 1000 100 126 141 174 133.868
n = 2500 120 146 162 199 154.169
n = 5000 124 160 177 217 168.815

Panel B: K = 2
n = 500 41 54 62 76 58.208
n = 1000 44 62 72 92 67.362
n = 2500 43 71 83 108 77.154
n = 5000 56 78 91 124 84.68

Panel A reports the degree distributions when the number of blocks is K = 1
(Erdős–Rényi model), and Panel B reports the degree distributions when the number of
blocks is K = 2. The first column reports the number of nodes n, and the second to
the fifth columns report the minimum, 25th percentile, 75th percentile, maximum, and
mean of the degree.

Table 2. Global Measures of the Generated Graphs

λ2,L λn,F |Cn| ηn Hn

Panel A: K = 1
n = 500 0.842 236.914 496 0.009 0.021
n = 1000 0.842 271.302 993 0.008 0.018
n = 2500 0.846 311.924 2486 0.007 0.016
n = 5000 0.849 341.375 4974 0.006 0.014

Panel B: K = 2
n = 500 0.013 119.039 495 0.017 2.852
n = 1000 0.008 138.749 989 0.015 4.088
n = 2500 0.007 158.181 2478 0.013 3.987
n = 5000 0.005 173.399 4938 0.012 4.648

Note: Panel A reports the global measures when the number of blocks is K = 1
(Erdős–Rényi model), and Panel B reports the global measures when the number of
blocks is K = 2. The first column reports the number of nodes n, the second column
reports the connectivity measure λ2,L, the third column reports the dependence measure
λn,F , and the fourth column reports the number of nodes in Cn = {i ∈ V : ci > 0.2}.
The last two columns report the convergence measures ηn and Hn.

approximation underlying (3.3) is not theoretically guaranteed. The strong performance

in this case suggests that the approximation remains accurate in finite samples, even when

the graph is not well-connected.

In contrast, confidence intervals based on the asymptotic normality of α̂i under inde-

pendence of ϵ (based on Jochmans and Weidner, 2019) show substantial under-coverage

in both K = 1 and K = 2, highlighting the importance of accounting for the dependence
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structure in the error terms. This under-coverage is more pronounced in a single block

(K = 1) than in two blocks (K = 2), likely because the relative contribution of the

independent component of the error term is smaller in this case than in K = 2.

Table 3. Coverage Probability of the Confidence Intervals

α1 d1 (dt1 − ds1)/d1 λn,F/(d1λ2,Lh1) 95% cov Normal 95% cov
Panel A: K = 1

n = 500 -0.596 119 -0.697 0.02 0.946 0.440
n = 1000 0.314 143 -0.986 0.016 0.954 0.278
n = 2500 0.281 161 -0.652 0.014 0.948 0.370
n = 5000 0.539 159 -0.635 0.016 0.944 0.403

Panel B: K = 2
n = 500 -0.594 49 -0.878 3.886 0.948 0.516
n = 1000 0.312 67 -1.0 3.966 0.954 0.365
n = 2500 0.278 72 -0.583 4.407 0.944 0.565
n = 5000 0.542 93 -0.613 3.721 0.931 0.508

Note: Panel A reports the results for K = 1 (Erdős–Rényi model), and Panel B reports
the results for K = 2. The first column reports the number of nodes n, the second
column reports the true value of α1, the third and fourth columns report node 1’s degree
and the coefficient, respectively. The fifth column reports the convergence measure H1 =
λn,F /(d1λ2,Lh1). The sixth column reports the coverage probability of the confidence
intervals based on (3.3), and the seventh column reports the coverage probability of the
confidence intervals based on Jochmans and Weidner (2019)’s asymptotic normality.

5.3. Results: Variance Components.

In this exercise, we evaluate the performance of our proposed bias correction method for

estimating the sample variance of the fixed effects α. We compare the true variance Vα

with the plug-in estimator V̂α, the bias-corrected estimator V̂ bc
α , the rule-of-thumb mod-

ified bias-corrected estimator V̂ bc,mod
α , and the Andrews et al. (2008)-type bias-corrected

estimator V̂ a
α . We simulate each of these variance estimators 2000 times and compute the

mean and standard deviation of the estimated variance.

Table 4 summarizes the results. The plug-in estimator V̂α exhibits substantial upward

bias. The bias-corrected estimator V̂ bc
α is much closer to the true value Vα, demonstrating

the effectiveness of our bias correction. The rule-of-thumb estimator V̂ bc,mod
α performs well

for K = 1, but tends to overcorrect and display downward bias for K = 2, indicating

that more adaptive or refined bias correction methods may be needed for certain graph

structures. The Andrews et al. (2008)-type bias-corrected estimator V̂ a
α also reduces

bias, but its remaining bias is larger than that of V̂ bc
α and V̂ bc,mod

α due to unaccounted

dependence. The standard deviations of the variance estimators are generally similar
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(except for sd(V̂ bc
α ) for K = 2, n = 5000), suggesting that our bias-corrected estimator is

preferable in terms of mean squared error.

Table 4. Variance Estimation

Vα V̂α V̂ bc
α V̂ bc,mod

α V̂ a
α sd(V̂α) sd(V̂ bc

α ) sd(V̂ bc,mod
α ) sd(V̂ a

α)
Panel A: K = 1

n = 500 0.334 0.544 0.359 0.328 0.494 0.0301 0.0282 0.0282 0.0298
n = 1000 0.34 0.549 0.361 0.333 0.505 0.0215 0.0201 0.0201 0.0214
n = 2500 0.329 0.53 0.347 0.323 0.492 0.0129 0.0122 0.0122 0.0128
n = 5000 0.336 0.528 0.353 0.33 0.494 0.009 0.0085 0.0085 0.0089

Panel B: K = 2
n = 500 0.334 0.609 0.388 0.32 0.492 0.04 0.0391 0.0391 0.0396
n = 1000 0.34 0.602 0.388 0.329 0.504 0.0302 0.0293 0.0293 0.03
n = 2500 0.329 0.574 0.356 0.309 0.495 0.0165 0.0164 0.0163 0.0163
n = 5000 0.336 0.568 0.362 0.319 0.496 0.0106 0.0109 0.0107 0.0105

Note: Panel A reports the results for K = 1 (Erdős–Rényi model), and Panel B reports
the results for K = 2. The first column reports the number of nodes n, the second
column reports the true variance of α, the third to seventh columns report the mean
and standard deviation of V̂α, V̂

bc
α , V̂ bc,mod

α , and V̂ a
α , respectively.

Figure 5.1. Histogram of the simulated V̂α: Erdős–Rényi Model

Note: the red line represents the true variance of α. The blue, orange, green, purple
bins represent the simulated V̂α, V̂

bc
α , V̂ bc,mod

α , V̂ a
α , respectively. n = 2500.
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Figure 5.2. Histogram of the simulated V̂α: Stochastic-Block Model

Note: the red line represents the true variance of α. The blue, orange, green, purple
bins represent the simulated V̂α, V̂

bc
α , V̂ bc,mod

α , V̂ a
α , respectively. n = 2500.

6. Empirical Application

In this section, we apply our methods to an Italian worker-firm matched dataset. First,

we construct a confidence interval for the fixed effect of a "central" firm in the firm-firm

mobility network. Next, we estimate the variance of the firm fixed effects and report the

corresponding bias-corrected variance using our proposed bias correction method.

6.1. Data.

The data are drawn from the Veneto Worker History (VWH) file.11 The VWH file contains

annual job spells for all workers employed in the Italian region of Veneto. For each spell,

annual wages and the number of days worked per year are reported for the period 1975-

2001. We follow the same sample selection strategy as in Kline et al. (2020). Specifically,

we focus on periods 1999 and 2001, on workers whose ages are between 18 and 64, and

on "dominant jobs" (i.e., spells) where the worker earned the most in a given year. We

11This dataset was developed by the Economics Department in Università Ca’ Foscari Venezia under the
supervision of Giuseppe Tattara.
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also exclude workers who work in the public sector and whose wage and days worked are

outliers.12

From this sample, we construct firm-firm network data where nodes represent firms and

edges represent links between firms connected by workers who have moved from one firm

to another. The construction is similar to the procedure we discussed in Example 1; our

handling of the data corresponds to the two-period AKM model. We focus on movers

who change firms from i to j between 1999 and 2001. For each mover, we construct

a firm pair (i, j) and compute the wage difference between the two firms. We exclude

firms with fewer than 15 movers, similarly to the procedure in Bonhomme et al. (2023).

The firm–firm network is then defined by the set of firms and the firm pairs connected by

movers, and we extract the largest connected component from this network. The resulting

graph represents our G, and the wage differences constitute the outcome vector y in our

model.

The resulting graph consists of |V | = 7123 firms and |E| = 66,770 links. Table 5

presents the degree distribution of the firm-firm network, which is sparse with a mean

degree of 18. Table 6 provides global measures of the network. Notably, the connectivity

measure λ2,L is very small and close to zero, indicating that the graph is not well-connected

and can be easily separated into components. The dependence measure λn,F exceeds the

maximum degree, and since λ2,L is small while λn,F is large, the global measure Hn is also

large. This suggests that, on average, the first-order approximation in Theorem 1 may

not be valid, and the finite-sample bias in V̂ bc
α is likely to be non-negligible.

Table 5. Degree Distribution for the Firm-Firm Network

min Q1 Q3 max mean
1.0 6.0 17.0 1092.0 18.748

Note: The first and fourth columns report the minimum and maximum degree of the
firm-firm network. The second and third columns report the 25th and 75th percentiles
of the degree distribution. The fifth column reports the average degree of the firm-firm
network.

6.2. Results: Inference for Central Firms.

First, we identify the most central firm in the firm-firm mobility network by computing

the PageRank centrality for each firm. PageRank centrality measures the importance of
12Specifically, "outliers" are defined as workers who (i) report a daily wage less than 5 euros or have zero
days worked, (ii) report a log daily wage change one year to the next greater than 1 in absolute value,
(iii) have more than 10 jobs in any year or have missing gender.
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Table 6. Global Measures for the Firm-Firm Network

λ2,L λn,F |Cn| ηn Hn

0.006 1779.6 4611.0 0.121 6248.04
Note: The first column reports the second smallest eigenvalue of the normalized Lapla-
cian matrix. The second column reports the largest eigenvalue of the signless Laplacian
matrix. The third column reports the number of nodes with ci > 0.2. The fourth and
fifth columns report the global measures of convergence.

a node based on its connections to other highly central nodes.13 In the context of the

firm-firm mobility network, a firm with high PageRank centrality is one that receives

many workers from other firms that themselves attract many movers. We are interested

in whether the fixed effect of this central firm is significantly different from others, as

this may indicate that firm fixed effects play an important role in shaping the mobility

network. As a related contribution, Sorkin (2018) provides a structural interpretation of

PageRank centrality in the context of firm-firm mobility networks.

Table 7. Distribution of the Firm Fixed Effects

min Q1 Q3 max mean
-1.41 -1.102 0.096 0.868 -0.017

Note: The first column reports the minimum of the firm fixed effects, the second and
third columns report the 25th and 75th percentiles of the firm fixed effects, respectively.
The fourth column reports the maximum of the firm fixed effects, and the last column
reports the mean of the firm fixed effects.

Applying the PageRank algorithm to our firm-firm mobility network, we find that

the most central firm is firm 931 in our dataset. Table 8 summarizes this firm’s key

characteristics. Its estimated fixed effect α̂931 is in approximately the top 34% of the

distribution of firm fixed effects. As a central firm, it has a larger number of in-flows

dt931 than out-flows ds931, which is consistent with the idea that central firms attract more

workers. The ratio H931 = λn,F/(d931λ2,Lh931) is about 2.90, which is much smaller than

the average value Hn ∼ 6248 and comparable to what we observed in the simulation study

when the graph is not well-connected (see Table 3). This suggests that our inference

procedure based on the first-order approximation in Theorem 1 may be valid for this

central firm, and we can construct a confidence interval for α̂931.

13See Newman (2018) for the precise definition and discussion of PageRank centrality.

38



Table 8. Central Firm Information

α̂931 d931 dt931 ds931 H931

0.058 455 309 146 2.90
Note: The first column reports the estimated fixed effect of the central firm, the second
to fourth columns report the firm’s degree, the number of in-flows, and the number
of out-flows, respectively. The last column reports the convergence measure H931 =
λn,F /(d931λ2,Lh931).

The 95% confidence interval for α̂931 is given by the following:

CI931,0.95 =

 α̂931︸︷︷︸
=0.058

−

dt931 − ds931
d931︸ ︷︷ ︸
=0.358

 ĉ0.975︸ ︷︷ ︸
=0.234

, α̂931 −
(
dt931 − ds931

d931

)
ĉ0.025︸ ︷︷ ︸
=−0.201


= [−0.026, 0.130].

Note that the mean of the firm fixed effects is −0.017 (see Table 7), which lies within this

confidence interval. This suggests that the central firm’s fixed effect is not significantly

different from the average firm. Therefore, we do not find strong evidence that firm fixed

effects α are a primary driver of mobility network formation in this data.

For comparison, we can also construct confidence intervals based on the asymptotic

normality of α̂i under the assumption of independent errors, as in the simulation section.

The 95% confidence interval for α̂931 using this conventional method is

CINormal
931,0.95 = [0.031, 0.085].

This interval does not include the mean of the firm fixed effects, suggesting that the

central firm’s fixed effect is significantly different from the average firm. However, given

the under-coverage observed for this method in the simulation study, it likely overstates

the significance of the central firm’s fixed effect compared to our proposed approach. This

highlights the empirical relevance of dependence in the error terms and the importance

of accounting for it in inference.

This exercise demonstrates the practical applicability of our inferential method for

individual fixed effects, which is rarely implemented in empirical work. Another poten-

tial application is hypothesis testing to assess whether the fixed effects of firms within

a particular group (e.g., firms with similar observable characteristics) are statistically
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indistinguishable. Such a test could help determine whether grouping fixed effects, as

suggested by Bonhomme et al. (2019), is appropriate in empirical analyses.

6.3. Results: Variance Estimation.

We estimate the variance of the firm fixed effects V̂α and several bias-corrected estimators:

V̂ bc
α , V̂ bc,mod

α , and V̂ a
α . Table 9 presents the estimated variance of the firm fixed effects α

and the bias-corrected estimators.

Our results show that the bias-corrected estimator V̂ bc
α reduces the plug-in estimator

V̂α by approximately 28%, which is a larger reduction than that achieved by the Andrews

et al. (2008)-type bias-corrected estimator V̂ a
α (about 23%). The modified bias-corrected

estimator V̂ bc,mod
α yields an even lower estimate. These findings indicate that the depen-

dence structure in the data is substantial and that our proposed bias correction methods

more effectively account for this dependence, resulting in more accurate estimation of the

variance of the firm fixed effects.

Table 9. Variance Component Estimation on the VWH Data

V̂α V̂ bc
α V̂ bc,mod

α V̂ a
α

0.039 0.028 0.025 0.030
Note: This table reports the estimated variances of the firm fixed effects α via the plug-
in estimator V̂α, the bias-corrected estimator V̂ bc

α , the modified bias-corrected estimator
V̂ bc,mod
α , and the Andrews et al. (2008)-type bias-corrected estimator V̂ a

α .

If we disaggregate each bias correction, we obtain

σ̂2
τ︸︷︷︸

=0.015

× tr(BL∗MnL
∗B′FF′)

n︸ ︷︷ ︸
=0.695

, (σ̂2 − 2σ̂2
τ )︸ ︷︷ ︸

=0.022

× tr(MnL
∗)

n︸ ︷︷ ︸
=0.204

Note that σ̂2
τ , which is an estimator for E[τ(Ui)

2], is about 0.015, which is roughly one-

quarter of σ̂2, the biased estimator for E[ϵ2e]. This disparity suggests that in our data

the dependence structure plays a non-negligible role in generating the error terms, and

this effect is transmitted to the bias in the variance estimator. Moreover, although there

are uncertainties in estimating E[τ(Ui)
2] and E[ϵ2e], a heuristic comparison of the two

quantities characterizing the graph structure

tr(BL∗MnL
∗B′FF′)/n and tr(MnL

∗)/n
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indicates that the first term is more than three times larger than the second term. Thus,

even if σ̂2
τ were estimated to be smaller than the current estimate, the bias originating

from the dependence structure would remain significant.

This exercise demonstrates that the bias in variance estimation due to dependence,

which has been largely overlooked in the literature, can be substantial in empirical ap-

plications. It also provides evidence that the dependence structure in the data is non-

negligible, highlighting the practical usefulness of our bias correction method.

What we did not explore in this paper is how the dependence structure affects estimation

of covariance between worker and firm fixed effects, which is of interest in empirical

applications as it indicates sorting effects between workers and firms. We leave this to

future research.

7. Conclusion

This paper proposes a new inferential method for fixed effects in network data with

dependent errors. We provide a novel first-order approximation for the fixed effect es-

timator and show that the fixed effect estimator is potentially inconsistent due to the

dependence structure. Leveraging this result, we propose a valid randomization-based

inference method for individual fixed effects.

We also consider a moment estimation problem for fixed effects commonly used in

empirical applications. We characterize the bias in the plug-in variance estimator under

dependence and propose a robust bias correction method.

We illustrate the finite-sample properties of our methods through a simulation study and

an empirical application to an Italian worker-firm matched dataset. Our results highlight

that the dependence structure is a significant source of bias in variance estimation for

fixed effects in network data.
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Appendix A. Covariates

Our model with covariates is given by:

y = Bα+Xβ + ϵ,

where X is a matrix of covariates. Let MB ≡ Im − B(B′B)∗B′ and MX ≡ Im −

X(X′X)−1X′ be the projection matrices onto the nullspace of B and X, respectively.

Then, the fixed effect estimators are given by:

α̌ = (B′MXB)∗B′MXy, β̂ = (X′MBX)−1X′MBy,

where we assume that rank(X) = p and rank((X,B)) = p+n−1. Our goal is to replicate

the results in Theorem 1 for α̌i.

Algebraically, we have

α̌−α = D−1B′ϵ+ r + r̃,

where

r = D−1A(α̌−α), r̃ = −D−1B′X(β̂ − β).

We already worked out the first term D−1B′ϵ in the proof of Theorem 1. Thus, we need

to show that both r and r̃ are negligible.

First, we show that r̃ is negligible. Note that E[r̃] = 0. Observe that

β̂ − β = (X′MBX)−1X′MBϵ

with E[β̂ − β] = 0. Then,

E[(β̂ − β)(β̂ − β)′] = (X′MBX)−1X′MBE[ϵϵ′]MBX(X′MBX)−1

≤ C(XMBX)−1X′MBFF
′MBX

′(XMBX)−1

≤ λn,FC(XMBX)−1

for some absolute constant C > 0 under Assumption 1: E[ϵϵ′] ≤ CFF′. Let

ρ̃ = ∥(X′X)(X′MBX)−1∥2,
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where ∥·∥2 is the spectral norm. By the definition of ρ̃, we have (X′MnX)−1 ≤ ρ̃(X′X)−1.

Thus, we have

E[r̃2
i ] = e′iDB′XE[(β̂ − β)(β̂ − β)′]X′BD−1ei

≤ λn,FCe′iDB′X(X′MBX)−1X′BD−1ei

≤ λn,F ρ̃Ce′iDB′X(X′X)−1X′BD−1ei

=
λn,F ρ̃C

m
x̄′
iΩ

−1x̄i,

where x̄i = XD−1ei and Ω = X′X/m. Since λn,F = O(maxi∈V di), as long as maxi∈V di/m =

o(1) and ρ̃× x̄′
iΩ

−1x̄i = O(1), we have r̃i = op(1).

Second, we show that r is negligible. Note that E[r] = 0. Let

ρ = ∥(X′X)−1X′MBX∥2.

We have

E[r2
i ] = e′iD

−1AE[(α̌−α)(α̌−α)′]A′D−1ei

= e′iD
−1A(B′MXB)∗B′MXE[ϵϵ′]MXB(B′MXB)∗A′D−1ei

≤ λn,FC × e′iD
−1A(B′MXB)∗A′D−1ei

≤ λn,FC × e′iD
−1A(B′B)∗A′D−1ei

+ λn,FC × ρ−1D−1A(B′B)∗B′X(X′X)−1X′B(B′B)∗A′D−1ei

where the last line follows from (S.14) in Jochmans and Weidner (2019). Since (B′B)∗ ≤

λ−1
2,LD

−1 and X(X′X)−1X′ ≤ I, we have

E[r2
i ] ≤ λn,FC × e′iD

−1A(B′B)∗A′D−1ei + λn,FC × ρ−1D−1A(B′B)∗A′D−1ei

≤ λn,FC(1 + ρ)

ρλ2,L

× e′iD
−1AD−1A′D−1ei

=
λn,FC(1 + ρ)

ρλ2,Lhidi
.

If λn,F/(diλ2,Lhi) = o(1), ri = op(1) as long as ρ−1 = O(1).

In summary, as long as

• maxi∈V di = o(m),

• ρ̃× x̄′
iΩ

−1x̄i = O(1)
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• ρ−1 = O(1),

then Theorem 1 holds for α̌ as well.

Appendix B. Inference with Asymmetric τ t and τ s

In the main text, our analysis with regard to inference and variance estimation focused

on the symmetric case where τ t = τ s is imposed by Assumption 5. In this appendix, we

discuss potential extensions to the asymmetric case where τ t ̸= τ s.

As argued in the main text, the central problem in the asymmetric case is that τ t(Ui)

and τ s(Ui) are not identified separately from the following two approximations:

α̂i ∼ αi +
dti
di
τ t(Ui)−

dsi
di
τ s(Ui);

τ̂i ∼
τ t(Ui) + τ s(Ui)

2
.

In the following, we first discuss possible restrictions on τ t(Ui) and τ s(Ui) that can help

identify them separately, and then we proceed to show that inference can still be conducted

under such restrictions.

B.1. Restrictions on τ t and τ s.

One possible restriction is to assume the linear relationship between τ t and τ s: for some

function τ ,

τ s = τ, τ t = cτ,

where c is an absolute constant. Instead, we can also treat τ t as a basis function of τ s. Note

also that we do not need to place an intercept restriction on τ t as E[τ t(Ui)] = E[τ s(Ui)] = 0

by Assumption 1. Furthermore, τ t = τ s is a special case of this restriction with c = 1.

Under this restriction, the approximations for α̂i and τ̂i become:

α̂i ∼ αi +
cdti − dsi

di
τ(Ui),

τ̂i ∼
(c+ 1)

2
τ(Ui).

Write

α̂i = αi +
cdti − dsi

di
τ(Ui) + ri,1

τ̂i =
c+ 1

2
τ(Ui) + ri,2,
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where ri,1 and ri,2 are the approximation errors. By the proof of Theorem 1, ri,2 is

Op(
√

1/di). For ri,1, it is known that ri,1 = Op(
√

λn,F/(diλ2,Lhi)) by Theorem 1.

We construct the estimator for c in the following manner. First, we regress α̂i on τ̂i

and obtain the following regression coefficient:

β̂n ≡
|Cn|−1

∑
i∈Cn τ̂iα̂i

|Cn|−1
∑

i∈Cn τ̂
2
i

.

By Lemma 3, the denominator converges to ((c+1)/2)2E[τ(Ui)
2]. The convergence of the

numerator is shown as follows:

1

|Cn|
∑
i∈Cn

τ̂iα̂i =
c+ 1

2

1

|Cn|
∑
i∈Cn

cdti − dsi
di

× τ(Ui)
2 (B.1)

+
c+ 1

2

1

|Cn|
∑
i∈Cn

αiτ(Ui) (B.2)

+
c+ 1

2

1

|Cn|
∑
i∈Cn

ri,1τ(Ui) (B.3)

+
1

|Cn|
∑
i∈Cn

ri,2αi (B.4)

+
1

|Cn|
∑
i∈Cn

ri,2
cdti − dsi

di
τ(Ui) (B.5)

+
1

|Cn|
∑
i∈Cn

ri,2ri,1. (B.6)

The first term (B.1) converges to (c + 1)/2 × E[τ(Ui)
2] limn→∞ |Cn|−1

∑
i∈Cn(cd

t
i − dsi )/di

and the second term (B.2) converges to 0 in probability by the law of large numbers as

E[τ 2(Ui)] < ∞, |(cdti − dsi )/di| ≤ |c| + 1 < ∞, and maxi∈Cn |αi| = O(1). The third term

(B.3) converges to 0 in probability since

E[|ri,1τ(Ui)|] ≤
√
E[r2i,1]

√
E[τ(Ui)2] = O

(√
λn,F

diλ2,Lhi

)
by the Cauchy-Schwarz inequality so that

E[(B.3)] = Op

(
1

|Cn|
∑
i∈Cn

√
λn,F

diλ2,Lhi

)
= o(1).

Thus, (B.3) = op(1) by the Markov inequality. By the similar argument, the fourth to sixth

terms (B.4), (B.5), and (B.6) also converge to 0 in probability (if 1/|Cn|
∑

i∈Cn

√
1/di =
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o(1)). Therefore, by the continuous mapping theorem, we have

1

|Cn|
∑
i∈Cn

τ̂iα̂i →p
c+ 1

2
E[τ(Ui)

2] lim
n→∞

1

|Cn|
∑
i∈Cn

(cdti − dsi )/di.

Thus, writing dt ≡ limn→∞ |Cn|−1
∑

i∈Cn d
t
i/di and ds analogously, we have

β̂n →p
2(cdt − ds)

c+ 1
.

Therefore, we can construct a consistent estimator for c as follows:

ĉn =
2ds + β̂n

2dt − β̂n

+Op

(
1

|Cn|
∑
i∈Cn

√
λn,F

diλ2,Lhi

)
,

as n → ∞.

Hence, by collecting 2(ĉn + 1)−1τ̂i ∼ τ(Ui), we can construct the consistent estimator

for Fτ and conduct inference on α̂i similar to the symmetric case.

One could also consider a more general case where τ t and τ s are related by a nonlinear

function, such as τ t = g(τ s) for some function g. This generalizes the linear case, since

g could be linear, but additional restrictions on the distribution of τ(Ui) are needed to

obtain useful moment conditions for identifying g. For example, suppose g is invertible

and its inverse g−1 is odd, and τ(Ui) is symmetrically distributed around 0. Then, defining

τ̃i = (g(τ(Ui)) + τ(Ui))/2, we have∑
i∈Cn

E
[
τ̃ 2m−1
i

(
αi − τ(Ui) +

2dti
di

g−1(τ̃i)

)]
= 0

for each integer m ≥ 1, by g−1 being an odd function and the symmetry of τ̃i with respect

to τ(Ui). Estimation of g can proceed by parameterizing g as an odd polynomial function,

such as g(x) =
∑K

k=0 akx
2k+1, and estimating the coefficients ak using the method of

moments up to some finite order K. We do not pursue this direction in this paper, but it

is a potential extension of our method.

B.2. Inference.

Focus on the case where τ s = τ and τ t = cτ for some constant c. We have shown that

ĉn consistently estimates c. Write ˆ̂τi = 2(ĉn + 1)−1τ̂i, which is a consistent estimator for

τ(Ui). Then, the distribution Fτ can be estimated by the empirical distribution of ˆ̂τi,
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denoted by F̂τ :

F̂τ (·) ≡
1

|Cn|
∑
i∈Cn

I(ˆ̂τi ≤ ·),

where I(·) is the indicator function.

The uniform consistency of F̂τ to Fτ over a compact subset of R follows from modifying

the proof of Theorem 2. First, observe that

2

ĉn + 1
=

2

c+ 1
+ rn,3, rn,3 = Op

(
1

|Cn|
∑
i∈Cn

√
λn,F

diλ2,Lhi

)
,

by the delta method so that

ˆ̂τi =
2

ĉn + 1
τ̂(Ui)

= τ(Ui) +
2

c+ 1
ri,2 +

c+ 1

2
τ(Ui)rn,3 + ri,2rn,3.

We can bound E[|ˆ̂τi − τ(Ui)|] by the rates of convergence of ri,2 and rn,3. By replacing τ̂i

with ˆ̂τi in the proof of Theorem 2, we have

sup
t∈R

|F̂τ (t)− Fτ (t)| →p 0,

as n → ∞, similarly as before but with slower rates of convergence.

With F̂τ , we can conduct inference on α̂i in the same manner as in the symmetric case.

For example, a (1− α)-level confidence interval for αi is given by

CIi,1−α =


[
α̂i −

(
dti ĉn−dsi

di

)
ĉ1−α/2, α̂i −

(
dti ĉn−dsi

di

)
ĉα/2

]
, if dtiĉn − dsi > 0,[

α̂i −
(

dti ĉn−dsi
di

)
ĉα/2, α̂i −

(
dti ĉn−dsi

di

)
ĉ1−α/2

]
, if dtiĉn − dsi < 0,

where ĉα is the α-quantile of F̂τ .

Appendix C. Additional Simulation

In this Appendix, we present additional simulation results to complement the exercises

in the main text. Unless otherwise specified, we use the same simulation settings as in

Section 5.

C.1. Inference with non-normal errors. In Section 5, the distribution of τ(Ui) was

assumed to be standard normal. Here, we consider the case where τ(Ui) follows a standard

logistic distribution, which has heavier tails than the normal distribution, to verify the
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validity of the inference procedure to the non-normal case. Specifically, we modify the

simulation settings by setting

Ui ∼ Logistic(0, 1), τ(Ui) = Ui.

The results are reported in Table 10. As in the normal case, the coverage probabilities

of the confidence intervals based on (3.3) are close to the nominal level of 95% for both

K = 1 and K = 2. As before, the normal approximation based on Jochmans and Weidner

(2019) is not valid in both cases. This result suggests that our inference procedure is not

sensitive to the distribution of τ(Ui) once the regularity conditions are satisfied.

Table 10. Coverage Probability of Confidence intervals

α1 d1 (d+1 − d−1 )/d1 λn,F/(d1λ2,Lh1) 95% cov Normal 95% cov
Panel A: K = 1

n = 500 -0.596 119 -0.697 0.02 0.949 0.333
n = 1000 0.314 143 -0.986 0.016 0.952 0.2015
n = 2500 0.281 161 -0.652 0.014 0.944 0.2905
n = 5000 0.539 159 -0.635 0.016 0.94 0.3145

Panel B: K = 2
n = 500 -0.594 49 -0.878 3.886 0.942 0.3975
n = 1000 0.312 67 -1.0 3.966 0.956 0.3
n = 2500 0.278 72 -0.583 4.407 0.944 0.4645
n = 5000 0.542 93 -0.613 3.721 0.96 0.418

Panel A reports the results for K = 1 and Panel B reports the results for K = 2. The
first column reports the number of nodes n, the second column reports the true value of
α1, the third and fourth columns report node 1’s degree and the coefficient, respectively.
The fifth column reports the convergence measure H1 = λn,F /(d1λ2,Lh1). The sixth
column reports the coverage probability of the confidence interval for α1 at the 95%
level based on (3.3). The last column reports the coverage probability of the confidence
intervals based on Jochmans and Weidner (2019)’s asymptotic normality.

C.2. Testing the joint hypothesis. In the main text, we proposed a Wald-type test

for testing H0 : αV0 = a versus H1 : αV0 ̸= a, where a is a vector of constants. Here, we

present some preliminary simulation results to check the size and power of the test.

Let V0 = {1, 2, ..., 9, 10} and a = (0, 0, ..., 0). We then generate the data as before

except that we set αV0\{1} = 0 and α1 ∈ {0, 1, 2, 3}, corresponding to the null hypothesis

and the alternative hypothesis. When computing the test statistic (3.4) and simulate the

critical value, we drop the nodes in V0 if (dti + dsi )/di ≤ 0.4 to avoid the cases where the

first-order approximation is not valid. If the threshold is closer to 1, the test is likely to

be less powerful, but the size is more likely to be controlled.
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Table 11 reports the rejection rates of the joint hypothesis test at the 95% significance

level. The results show that the size of the test is controlled at the nominal level of 5%

for both K = 1 and K = 2. As expected, the power of the test increases as α1 increases.

The power tends to be higher for K = 1 than for K = 2, likely due to the fact that the

first-order approximation is more accurate for more well-connected networks. However,

there is non-monotonicity in the power of the test as n increases, possibly because the

change in the network structure affects the values of dti and dsi , which in turn affects which

nodes are included in the test and its performance.

Table 11. Size and Power of the Joint Hypothesis Test

H0 : α1 = 0 H1 : α1 = 1 H1 : α1 = 2 H1 : α1 = 3
Panel A: K = 1

n = 500 0.049 0.18 0.626 0.947
n = 1000 0.054 0.13 0.429 0.819
n = 2500 0.04 0.161 0.58 0.93
n = 5000 0.048 0.164 0.57 0.903

Panel B: K = 2
n = 500 0.051 0.138 0.471 0.852
n = 1000 0.045 0.143 0.429 0.768
n = 2500 0.041 0.161 0.551 0.912
n = 5000 0.04 0.169 0.617 0.945

Note: Panel A reports the results for K = 1 and Panel B reports the results for K = 2.
Each column reports the rejection rate of the joint hypothesis test at the 95% significance
level. In each case, αV0\{1} = 0 but α1 = 0 for the first column, and α1 = 1, 2, 3 for the
second to fourth columns.

Appendix D. Proofs

D.1. Proof of Theorem 1.

Proof. We bound each term in the right-hand side of (3.1):

α̂−α = D−1B′(Fsτ s + Ftτ t) +D−1B′(ϵ− Fsτ s − Ftτ t) + r

We first show the unbiasedness of the fixed effect estimator:

Lemma 1. Under the stated assumptions, we have

E[α̂−α] = 0.
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Proof. Observe that

α̂ = L∗Lα+ L∗B′ϵ.

Since E[ϵ] = 0, it suffices to show that L∗Lα = α. By the proof of Theorem 2 and S.1 in

Jochmans and Weidner (2019), we have

L∗L = In −m−1ιnd
′.

Since d′α = 0 by Assumption 1, we have

L∗Lα = Inα−m−1ιnd
′α = α.

This proves the lemma. □

Another useful lemma is the following:

Lemma 2. Under the stated assumptions, Cλn,F ≥ σ̃2
n for some absolute constant C > 0.

Proof. Note that FF′ is a non-negative, positive-semidefinite matrix and each block corre-

sponding to edges in E(i,j), (FF′)(i,j) is a principal submatrix of FF′. Thus, by Corollary

8.1.20 in Horn and Johnson (2012), we have

λn,F ≥ λmax((FF
′)(i,j)),

for each (i, j) and λmax(·) is the largest eigenvalue of a matrix. Notice that

(FF′)(i,j) = 2× ι|E(i,j)|ι
′
|E(i,j)|

so that λmax((FF
′)(i,j)) = 2× |E(i,j)|. Therefore,

λn,F ≥ 2max
(i,j)

|E(i,j)|.

By Assumption 1, we have

σ̃2
n = max

(i,j)
Ai,j × [max

e,e′
∈ E(i,j)σe,e′ − E[τ s(Ui)

2 + τ t(Ui)
2]]

≤ Cmax
(i,j)

Ai,j = Cmax
(i,j)

|E(i,j)|,
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for some absolute constant C > 0. Thus, we have

σ̃2
n ≤ C/2× 2max

(i,j)
|E(i,j)| ≤ C/2× λn,F .

This proves the lemma. □

Next, we bound the variance of the remaining term r = D−1A(α̂−α). Observe that

V ar(α̂) ≤ Cλn,FL
∗

for some constant C > 0 by Lemma 2. Thus, we have

V ar(r) = D−1AV ar(α̂)A′D−1

≤ Cλn,FD
−1AL∗AD−1

≤ Cλn,F

λ2,L

×D−1AD−1AD−1,

where the second inequality follows from L∗ ≤ D−1/λ2,L. Thus, for each element, we have

V ar(ri) = e′iV ar(r)ei ≤
Cλn,F

λ2,L

× e′iD
−1AD−1AD−1ei.

=
Cλn,F

diλ2,Lhi

.

Since E[ri] = 0 by Lemma 1, we have

ri = Op

(√
λn,F

diλ2,Lhi

)
.

by Chebyshev’s inequality.

Third, we bound the other error term o ≡ D−1B′(ϵ − Ftτ t − Fsτ s). This term is

mean-zero and its variance is given by:

V ar(o) = D−1B′Ω2BD−1

≤ σ̃2
n ×D−1B′BD−1

Thus, for each element, we have

V ar(oi) = e′iV ar(o)ei = σ̃2
n × e′iD

−1B′BD−1ei

≤
Cmax(i,j) |E(i,j)|

di
.
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for some constant C > 0 under Assumption 1. Thus, we have

oi = Op

√max(i,j) |E(i,j)|
di

 = op(1),

by Chebyshev’s inequality as di → ∞.

Finally, we work on the main term T ≡ D−1B′(Ftτ t + Fsτ s). Observe that

T =

dtiτ
t(Ui)− dsi τ

s(Ui)

di
− 1

di

∑
e∈Et

i

τ s(Us(e)) +
1

di

∑
e∈Es

i

τ t(Ut(e))


i∈V

,

as pointed out in the main text. Thus, it suffices to show that

1

di

∑
e∈Et

i

τ s(Us(e)) = op(1),
1

di

∑
e∈Es

i

τ t(Ut(e)) = op(1).

These averages are mean-zero and each variance is given by:

dti
d2i

E[τ s(Uj)
2] = o(1),

dsi
d2i

E[τ t(Uj)
2] = o(1),

as τ±(Uj) is i.i.d across j ∈ Vi. Thus, the averages converge to zero in probability by

Chebyshev’s inequality.

By the continuous mapping theorem, we have

α̂i − αi =
dtiτ

t(Ui)− dsi τ
s(Ui)

di
+Op

(√
λn,F

diλ2,Lhi

)
,

as di → ∞, which completes the proof. □

D.2. Proof of Theorem 2.

Proof. Write τ̂i = τ(Ui) + ri where ri = Op(
√

1/di) by Proposition 2 for i ∈ Cn. Let Fn

be the empirical distribution of τ(Ui) for i ∈ Cn. Then, observe that

sup
x∈R

|F̂n,τ (x)− Fτ (x)| ≤ sup
x∈R

|F̂n,τ (x)− Fn,τ (x)|+ sup
x∈R

|Fn,τ (x)− Fτ (x)| (D.1)

The second term in (D.1) converges to zero in probability by the Glivenko-Cantelli theorem

since τ(Ui) is i.i.d across i and |Cn| → ∞.

For the first term in (D.1), note that for any δ > 0,

I{τ̂i ≤ x} = I{τ(Ui) + ri ≤ x} ≤ I{τ(Ui) ≤ x+ δ}+ I{|ri| > δ},
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for each i ∈ Cn and x ∈ R. Since Fτ is non-decreasing, we have

sup
x∈R

|F̂n,τ (x)− Fn,τ (x)| ≤
1

|Cn|
∑
i∈Cn

I{|ri| > δ}+ sup
x∈R

|Fn,τ (x+ δ)− Fn,τ (x− δ)| (D.2)

The second term in (D.2) is bounded by

sup
x∈R

|Fn,τ (x+ δ)− Fn,τ (x− δ)| ≤ sup
x∈R

|Fτ (x+ δ)− Fτ (x− δ)|+ 2 sup
x∈R

|Fn,τ (x)− Fτ (x)|.

Since Fτ is continuous, the first term is arbitrarily small for sufficiently small δ. For the

first term in (D.2), note that

E[I{|ri| > δ}] = P(|ri| > δ) ≤ E[|ri|]
δ

= O

(
1√
diδ

)
.

Therefore, by Markov’s inequality, for any ϵ > 0, we have

P

(
1

|Cn|
∑
i∈Cn

I{|ri| > δ} > ϵ

)
≤ 1

ϵ|Cn|
∑
i∈Cn

E[I{|ri| > δ}] = O

(√
ηn

ϵδ

)
= o(1),

as ϵ and δ are arbitrary and ηn → 0 by the assumption.

Combining the above, we have,

sup
x∈R

|F̂n,τ (x)− Fτ (x)|

≤ 3 sup
x∈R

|Fn,τ (x)− Fτ (x)|+ sup
x∈R

|Fτ (x+ δ)− Fτ (x− δ)|+ 1

|Cn|
∑
i∈Cn

I{|ri| > δ}

= op(1),

as n → ∞. This completes the proof. □

D.3. Proof of Theorem 3.

Proof. First, we show the consistency of σ̂2
τ :

Lemma 3. Under the stated assumptions, we have

σ̂2
τ →p σ

2
τ .
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Proof. Observe that

τ̂i = τ(Ui) + c−1
i

(
1

di

∑
e∈Ei

ϵ̂e − ciτ(Ui)

)
︸ ︷︷ ︸

≡ũi

.

Then,

σ̂2
τ =

1

|Cn|
∑
i∈Cn

τ 2(Ui) (D.3)

+
2

|Cn|
∑
i∈Cn

τ(Ui)ũi (D.4)

+
1

|Cn|
∑
i∈Cn

ũ2
i . (D.5)

The first term (D.3) converges to E[τ 2(Ui)] by the law of large numbers as τ(Ui) is i.i.d

across i ∈ Cn with a finite second moment.

The third term (D.5) converges to zero in probability. To see this, from the proof of

Proposition 2, observe that

E[ũ2
i ] = O

(
1

di

)
,

since ci > c. Thus, we have

E[(D.5)] = O(ηn) = o(1),

under the hypothesis that ηn → 0 as n → ∞. Then, by Markov’s inequality, (D.5)

converges to zero in probability.

The second term (D.4) converges to zero in probability by the Cauchy-Schwarz inequal-

ity:

(D.4) ≤
√

1

|Cn|
∑
i∈Cn

τ 2(Ui)

√
1

|Cn|
∑
i∈Cn

ũ2
i = Op(

√
ηn) = op(1),

as shown above. This completes the proof of Lemma 3. □
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Observe that

V̂ bc
α − Vα = 2

ϵ′BL∗Mnα

n
(D.6)

+ 2
(ϵ− Fτ )′BL∗MnL

∗B′Fτ

n
(D.7)

+
(ϵ− Fτ )′BL∗MnL

∗B′(ϵ− Fτ )

n
(D.8)

+
(E[τ 2(Ui)]− σ̂2

τ )× tr(BL∗MnL
∗B′FF′)

n
(D.9)

+
τ ′F′BL∗MnL

∗B′Fτ

n
− E[τ 2(Ui)]× tr(BL∗MnL

∗B′FF′)

n
(D.10)

The first term (D.6) is mean-zero and its variance is proportional to

V ar

(
ϵ′BL∗Mnα

n

)
=

1

n2
E[ϵ′BL∗Mnαα′MnL

∗B′ϵ]

=
1

n2
tr(BL∗Mnαα′MnL

∗B′E[ϵϵ′])

≤ Cλn,F

n2
×α′L∗α

≤ Cλn,F

n
× 1

nλ2,L

n∑
i=1

α2
i

di

≤ C × Cα × λn,F

n
× 1

nλ2,L

n∑
i=1

1

di

= o(1),

where the first inequality follows from Lemma 2 for some constant C > 0, the second

inequality follows from L∗ ≤ λ−1
2 D−1 and α′L∗α ≤

∑n
i=1

α2
i

di
, and the third inequality

follows from the assumption that maxi∈V |αi| ≤ Cα for some absolute constant Cα > 0.

Thus,

(D.6) = op(1),

by Chebyshev’s inequality.

The second term (D.7) is mean-zero and let Q ≡ BL∗MnL
∗B′. Then, we can write

(D.7) = 2
(ϵ− Fτ )′QFτ

n
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and its variance is given by

V ar((D.7)) =
4

n2
E[(ϵ− Fτ )′QFτ (ϵ− Fτ )′QFτ ]

=
4E[τ 2(Ui)]

n2
tr(QFF′Q′Ω2)

+
4

n2

∑
e1,e2,e3,e4∈E

Qe1,e2Qe3,e4cum((ϵ− Fτ )e1 , (ϵ− Fτ )e2 , (Fτ )e3 , (Fτ )e4),

where

cum(x1, x2, x3, x4) = E[x1x2x3x4]− (E[x1x2] + E[x1x3] + E[x1x4]).

The first term on the right-hand side is bounded by

E[τ 2(Ui)]

n2
tr(QFF′Q′Ω2) ≤

E[τ 2(Ui)]

n2
× σ̃2

n × λn,F × tr(L∗)2

≤ E[τ 2(Ui)]× σ̃2
n × λn,F ×

(
1

n

∑
i∈V

d−1
i +

1

nλ2,L

∑
i∈V

d−1
i h−1

i

)2

= o(1),

where the first inequality follows from Ω2 ≤ σ̃nIm, FF′ ≤ λ2
nIm,and tr(QQ′) = tr(L∗L∗) ≤

tr(L∗)2, the second inequality follows from e′iL
∗ei ≤ 1/di + 1/(diλ2,Lhi) for each i ∈ V ,

and the last equality follows from the hypothesis. The second term on the right-hand side

is bounded by

1

n2

∑
e1,e2,e3,e4∈E

Qe1,e2Qe3,e4 × cum((ϵ− Fτ )e1 , (ϵ− Fτ )e2 , (Fτ )e3 , (Fτ )e4)

≤
C
(∑

e1,e2
Qe1,e2

)2
n2

=
C × tr(Q2)

n2

≤ C × tr(L∗)2

n2

≤ C ×

(
1

n

∑
i∈V

d−1
i +

1

nλ2,L

∑
i∈V

d−1
i h−1

i

)2

= o(1),

where the first inequality follows from Assumption 1 with uniformly bounded ϵe, the

equality follows from the fact that the square of the Frobenius norm is equal to the trace
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of the square of the matrix, and the rest is similar to the first term. Thus, we have

V ar((D.7)) = o(1),

and by Chebyshev’s inequality, we have (D.7) →p 0.

The third term (D.8)’s mean is given by

E[(D.8)] =
tr(BL∗MnL

∗B′Ω2)

n

≤ σ̃2
n × tr(L∗)

n

≤ σ̃2
n

n
×

(∑
i∈V

1

di
+
∑
i∈V

1

λ2,Lhidi

)
= o(1),

where the second inequality follows from e′iL
∗ei ≤ 1/di + 1/(diλ2,Lhi) for each i ∈ V .

Since (D.8) is non-negative (BL∗MnL
∗B is positive semi-defininte), this implies that

(D.8) →p 0.

The fourth term (D.9) converges to zero in probability by Lemma (3) and the fact that

tr(BL∗MnL
∗B′FF′)

n
≤ Cλn,F

n
× tr(L∗)

≤ Cλn,F

n
×

(∑
i∈V

1

di
+
∑
i∈V

1

λ2,Lhidi

)
= O(1),

where the second inequality follows from e′iL
∗ei ≤ 1/di + 1/(diλ2,Lhi) for each i ∈ V .

The fifth term (D.10) is mean-zero, and letting QF ≡ F′BL∗MnL
∗B′F, its variance is

given by

V ar

(
τ ′F′BL∗MnL

∗B′Fτ

n

)
=

E[τ 2(Ui)]

n2
× tr(Q2

F) +
(E[τ 4(Ui)]− 3E[τ 2(Ui)]

2)

n2
×
∑
i∈V

Q2
F,i,i

≤ E[τ 4(Ui)]

n2
× tr(Q2

F),
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where the inequality follows as tr(Q2
F) ≥

∑
i∈V Q2

F,i,i. We bound tr(Q2
F) as follows:

tr(Q2
F) = tr(F′BL∗MnL

∗B′FF′BL∗MnL
∗B′F)

≤ tr(L∗B′FF′BL∗L∗B′FF′BL∗)

≤ 2tr(D−1B′FF′BD−1D−1B′FF′BD−1)

+ 2tr(D−1AL∗B′FF′BL∗AD−1D−1AL∗B′FF′BL∗AD−1)

≤ 2tr(D−1B′FF′BD−1D−1B′FF′BD−1)

+
2λ2

n,F

λ2
2,L

tr(D−1AD−1AD−1D−1AD−1AD−1)

≤ 2tr(D−1B′FF′BD−1D−1B′FF′BD−1) + 2

(
λn,F

λ2,L

tr(D−1AD−1AD−1)

)2

= 2tr(D−1B′FF′BD−1D−1B′FF′BD−1) + 2

(
λn,F

λ2,L

∑
i∈V

1

dihi

)2

where the first inequality follows from the fact that ∥Mn∥ is bounded by 1, the second

inequality follows from BL∗ = BD−1 + BD−1AL∗ and the Cauchy-Schwarz inequality,

the third inequality follows from L∗ ≤ λ−1
2,LD

−1 and FF′ ≤ λn,F Im, and the last inequality

follows from tr(·2) ≤ tr(·)2. For the first term on the far right-hand side, we have

tr(D−1B′FF′BD−1D−1B′FF′BD−1)

=
∑
i∈V

(
(dti − dsi )

2 +
∑

j ̸=i r
2
i,j

d2i

)2

+
∑
i̸=j

(∑
k∈V ri,krj,k

didj

)2

≤ Cn(1 +
∑
i∈V

d−2
i )

for some constant C > 0, where ri,j =
∑

e∈E(i,j)
Be,i and the inequality follows from∑

j ̸=i r
2
i,j ≤ CAdi,

∑
k∈V ri,krj,k ≤ C2

Adi. Thus,

V ar

(
τ ′F′BL∗MnL

∗B′Fτ

n

)

≤ C

(
1

n
+

1

n

∑
i∈V

d−2
i

)
+ C

(
λn,F

λ2,L

1

n

∑
i∈V

1

dihi

)2

= o(1),

under the stated assumptions. Thus, by Chebyshev’s inequality, we have (D.10) →p 0.
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Finally, we combine all the results above to conclude that

V̂ bc
α − Vα →p 0.

This completes the proof. □

D.4. Proof of Proposition 1.

Proof. First, observe that

Ω1 ≤ σ2
τFF

′ ≤ σ2
τλn,F Im,

where the first inequality holds by F = Ft + Fs. Then, the first term in the variance

formula (2.7) is bounded by:

L∗B′Ω1BL∗ ≤ σ2
τλn,FL

∗,

where we used the fact that L∗ is a pseudo-inverse of B′B.

Next, since Ω2 ≤ σ̃2
nIm, the second term in the variance formula (2.7) is bounded by:

L∗B′Ω2BL∗ ≤ σ̃2
nL

∗.

Therefore, the variance of the fixed effect is bounded by:

V ar(α̂) ≤ (σ̃2
n + σ2

τλn,F )× L∗.

Thus, for a unit vector ei with 1 at the i-th position and 0 elsewhere, we have:

V ar(α̂i) = e′iV ar(α̂)ei ≤ (σ̃2
n + σ2

τλn,F )× e′iL
∗ei.

By the proof of Theorem 2 in Jochmans and Weidner (2019), we have

e′iL
∗ei ≤

1

di

(
1 +

1

λ2,Lhi

)
− 2

m
.

Thus,

V ar(α̂i) ≤ (σ̃2
n + σ2

τλn,F )×
{

1

di

(
1 +

1

λ2,Lhi

)
− 2

m

}
,

which completes the proof. □

D.5. Proof of Proposition 2.
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Proof. We prove this proposition in two steps. First, we transform the model to separate

the effects that are explained by the incidence matrix B from those that are not. Second,

we derive a first-order approximation to the residuals using the transformed model.

Step 1: Transform the model: Let V st = {i ∈ V : dti > 0 and dsi > 0} be the set

of nodes with both positive in- and out-degrees. Let V t = {i ∈ V : dti > 0} and V s =

{i ∈ V : dsi > 0} be the sets of nodes with positive in-degree and out-degree, respectively.

Redefine τ t and τ s as τ t = (I{i ∈ V t}·τ t(Ui))i∈V and τ s = (I{i ∈ V s}·τ s(Ui))i∈V . Define

the following vectors:

τ̃ t = (τ t(Ui))i∈V st , τ̃ s = (τ s(Ui))i∈V st ,

τ̌ t = (I{i ∈ V t, i /∈ V s} · τ t(Ui))i∈V , τ̌ s = (I{i ∈ V s, i /∈ V t} · τ s(Ui))i∈V .

Let F̃ be the m× |V st| matrix defined by: for each e ∈ E and i ∈ V st,

F̃e,i =

1 if s(e) = i or t(e) = i,

0 otherwise

Finally, let ϵ̃ = ϵ− Ftτ t − Fsτ s.

Note that the model can be rewritten as

y = Bα+ ϵ

= Bα+ Ftτ t + Fsτ s + ϵ̃

= B

(
α+

τ t

2
− τ s

2

)
+ F

(τ t + τ s)

2
+ ϵ̃,

where we used the facts that Ft = (F+B)/2 and Fs = (F−B)/2. For each e ∈ E,

(
F
(τ t + τ s)

2

)
e

=



τ t
t(e)

+τs
t(e)

+τ t
s(e)

+τs
s(e)

2
if s(e), t(e) ∈ V st

τ t
t(e)

+τs
t(e)

+τs
s(e)

2
if t(e) ∈ V st, s(e) /∈ V st, s(e) ∈ V s

τ t
t(e)

+τ t
s(e)

+τs
s(e)

2
if s(e) ∈ V st, t(e) /∈ V st, t(e) ∈ V t

τ t
t(e)

+τs
s(e)

2
if t(e), s(e) /∈ V st, t(e) ∈ V t, s(e) ∈ V s

This can be decomposed as(
F
(τ t + τ s)

2

)
e

=

(
F̃
(τ̃ t + τ̃ s)

2

)
e

+

(
B
(τ̌ t − τ̌ s)

2

)
e

,
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where

(
F̃
(τ̃ t + τ̃ s)

2

)
e

=



τ t
t(e)

+τs
t(e)

+τ t
s(e)

+τs
s(e)

2
if s(e), t(e) ∈ V st

τ t
t(e)

+τs
t(e)

2
if t(e) ∈ V st, s(e) /∈ V st

τ t
s(e)

+τs
s(e)

2
if s(e) ∈ V st, t(e) /∈ V st

0 if t(e), s(e) /∈ V st

(
B
(τ̌ t − τ̌ s)

2

)
e

=



τ t
t(e)

2
if t(e) ∈ V t, t(e) /∈ V s, s(e) ∈ V st

τs
s(e)

2
if s(e) ∈ V s, s(e) /∈ V t, t(e) ∈ V st

τ t
t(e)

+τs
s(e)

2
if t(e), s(e) /∈ V st, t(e) ∈ V t, s(e) ∈ V s

0 if t(e), s(e) ∈ V st

Therefore,

F

2
(τ t + τ s) = F̃

(τ̃ t + τ̃ s)

2
+B

(τ̌ t − τ̌ s)

2
.

Substituting this into the model, we obtain

y = B

(
α+

τ t + τ̌ t

2
− τ s + τ̌ s

2

)
+ F̃

(τ̃ t + τ̃ s)

2
+ ϵ̃. (D.11)

This is the transformed model where the effects explained by the incidence matrix B are

separated from those not explained by it, concluding the first step.

Step 2: Derive the first-order approximation to the residuals: Observe that from

the transformed model (D.11), we can write the residuals as

ϵ̂ = y −Bα̂ = (Im −B(B′B)∗B′)y = MBy

= MBF̃(τ̃
t/2 + τ̃ s/2) +MBϵ̃.

Recall that the statistic of interest minus ci(τ
t(Ui) + τ s(Ui))/2 can be written as

1

di

∑
e∈Ei

ϵ̂e − ci
τ t(Ui) + τ s(Ui)

2

=
1

di
1′i,mMBϵ̃ (D.12)

+
1

di
1′i,mMBF̃(τ̃

t/2 + τ̃ s/2)− ci
τ t(Ui) + τ s(Ui)

2
(D.13)

where 1i,m is the m-dimensional vector with 1i,m,e = 1 if e ∈ Ei and 0 otherwise.
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First, we show that (D.13) converges to zero in probability. By the definition of ϵ̃, this

term has mean zero. Its variance is given by

Var
(
1

di
1′i,mMBϵ̃

)
=

1

d2i
E
[
1′i,mMBϵ̃ϵ̃

′MB1i,m
]

≤ σ̃2
n

di
,

where the inequality follows from ∥MB∥ ≤ 1 (since MB is idempotent), E[ϵ̃ϵ̃′] ≤ σ̃2
nIm,

and 1′i,m1i,m = di. Since di → ∞, the variance converges to zero. Thus, by Chebyshev’s

inequality,

1

di
1′i,mMBϵ̃ = Op

(
1√
di

)
= op(1),

as di → ∞.

Second, we show that (D.12) converges in probability to zero. For i /∈ V st, this term

is exactly zero since either 1i,m = bi or 1i,m = −bi, where bi is the i-th column of B;

as there are no in- or out-flows for i, 1i,m is orthogonal to MB and thus the first term

vanishes. Also, note that c0 = 0 in this case.

For i ∈ V st, since E[τ±(Uj)|Ui] = 0 for j ̸= i, we have

E
[
1

di
1′i,mMBF̃(τ̃

t/2 + τ̃ s/2)− ci
τ t(Ui) + τ s(Ui)

2

∣∣∣∣Ui

]
= 0

where f̃ i is the i-th column of F̃, and ci =
1
di
1′i,mMBf̃ i. Note ci ∈ [0, 1] since MB is a

projection matrix and 1′i,mf̃ i = di.

Since

1

di
1′i,mMBF̃(τ̃

t/2 + τ̃ s/2)

=
1

2di

∑
j∈V st

(τ t(Uj) + τ s(Uj)) · 1′i,mMBf̃ j,
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the conditional variance given Ui is

Var
[
1

di
1′i,mMBF̃(τ̃

t/2 + τ̃ s/2)
∣∣Ui

]
=

E[(τ t(Ui) + τ s(Ui))
2]

4d2i

∑
j ̸=i∈V st

(
1′i,mMBf̃ j

)2
≤ E[(τ t(Ui) + τ s(Ui))

2]

4d2i

∑
j∈V st

|E(i,j)|2

≤
maxj∈V st |E(i,j)|2 · E[(τ t(Ui) + τ s(Ui))

2]

4di

= O

(
1

di

)
= o(1),

as di → ∞, where the first inequality uses ∥MB∥ ≤ 1 and 1′i,mf̃ j = |E(i,j)|, and the last

equality follows by assumption. By the law of total variance and

Var
[
1

di
1′i,mMBF̃(τ̃

t/2 + τ̃ s/2)− ci
τ t(Ui) + τ s(Ui)

2

]
= O

(
1

di

)
= o(1),

Thus, by Chebyshev’s inequality,

1

di
1′i,mMBF̃(τ̃

t/2 + τ̃ s/2)− ci
τ t(Ui) + τ s(Ui)

2
= Op

(
1√
di

)
= op(1),

as di → ∞.

Finally, combining the results from the two steps, we have

1

di

∑
e∈Ei

ϵ̂e − ci(τ
t(Ui) + τ s(Ui))/2 = Op

(
1√
di

)
= op(1),

as di → ∞ by the continuous mapping theorem. This completes the proof. □

D.6. Proof of Proposition 3.

Proof. Validity of the confidence interval: First, we show that ĉα →p cα, where cα

is the α-quantile of Fτ for any α ∈ (0, 1) such that cα < ∞. This is immediate from the

uniform convergence of F̂n,τ to Fτ in Theorem 2: Since F̂n,τ weakly converges to Fτ in

probability (Problem 23.1 in van der Vaart, 1998), F̂−1
n,τ (·) = inf{x ∈ R : F̂n,τ (x) ≥ ·}

weakly converges F−1
τ (·) = inf{x ∈ R : Fτ (x) ≥ ·} in probability (Lemma 21.2 in van der

Vaart, 1998). Since Fτ is continuous and strictly increasing around cα, F−1
τ (α) = cα and

ĉα = F̂−1
n,τ (α) →p cα.

Next, observe that by Theorem 1 and ((dti − dsi )/di)
−1 = O(1),

T̃ ≡
(
dti − dsi

di

)−1

(α̂i − αi) →p τ(Ui),
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as di → ∞. Thus, (T̃ , ĉα/2, ĉ1−α/2) weakly converges to (τ(Ui), cα/2, c1−α/2). By Slutsky’s

theorem, we have

P(ĉα/2 ≤ T̃ ≤ ĉ1−α/2) → P(cα/2 ≤ τ(Ui) ≤ c1−α/2) = Fτ (c1−α/2)− Fτ (cα/2) = 1− α.

This shows the asymptotic validity of the confidence interval.

Validity of the test: Observe that under the null hypothesis, by Theorem 1 and the

continuous mapping theorem, we have

T = ((τ(Ui))i∈V0)
′Cn((τ(Ui))i∈V0)︸ ︷︷ ︸

≡gn((τ(Ui)i∈V0
))≡T̃

+op(1)

→d ((τ(Ui))i∈V0)
′C((τ(Ui))i∈V0)︸ ︷︷ ︸

≡g((τ(Ui)i∈V0
))≡T∞

,

where C = D±
V0
Mn0D

±
V0

and D±
V0

= limn→∞ D±
n,V0

. Note that the cdf of T∞ is continuous.

Let τ (m)
i be m-th random draw from F̂n,τ (with replacement) for m = 1, ...,M . Then, the

simulated test statistic is given by

T̃ (m) = (τ
(m)
i )i∈V0)

′Cn((τ
(m)
i )i∈V0)︸ ︷︷ ︸

≡gn((τ
(m)
i )i∈V0

)

,

Cn = D±
n,V0

Mn0D
±
n,V0

and D±
n,V0

= diag((dti−dsi )/di, i ∈ V0). Note that T̃ (m),m = 1, ...,M

are independent and identically distributed conditional on F̂n,τ .

Let F̂⊗n0
n,T be the distribution of (τ (1)i )i∈V0 given F̂n,τ and F⊗n0

τ be the distribution of

(τ(Ui))i∈V0 . Since n0 is fixed, by the weak convergence of F̂n,τ to Fτ in probability, F̂⊗n0
n,T

weakly converges to F⊗n0
τ in probability (Theorem 2.8 in Billingsley, 1999). As gn and g

are continuous, by the continuous mapping theorem (Theorem 3.27 in Kallenberg, 2002),

Ĝn,T weakly converges to GT in probability, where Ĝn,T is the distribution of T̃ (1) given

F̂n,τ and GT is the distribution of T∞. Since GT is continuous, by the same argument

as in the proof of the validity of the confidence interval, we have ĉα →p cα, where ĉα is

the α-quantile of Ĝn,T and cα is the α-quantile of GT . Thus, (T, ĉα) weakly converges to

(T∞, cα). By Slutsky’s theorem, we have

P(T > ĉ1−α) → P(T∞ > c1−α) = 1−GT (c1−α) = α,

which shows the asymptotic validity of the test with the known Ĝn,T .
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Finally, we show that the test remains valid when Ĝn,T is estimated by the empirical

distribution of T̃ (m),m = 1, ...,M . Let Ĝn,T,M be the empirical distribution of T̃ (m),m =

1, ...,M given F̂n,τ . Let ĉα,M be the α-quantile of Ĝn,T,M . Observe that, for any ϵ > 0,

|P(T > ĉ1−α,M)− P(T > c1−α)|

=
∣∣∣P(Ĝn,T,M(T ) > 1− α)− P(GT (T ) > 1− α)

∣∣∣
≤ P (|GT (T )− 1 + α| ≤ ϵ) + P

(
|GT (T )− Ĝn,T,M(T )| > ϵ

)
≤ P (|GT (T )− 1 + α| ≤ ϵ) + P

(
sup
x∈R

|GT (x)− Ĝn,T,M(x)| > ϵ

)
,

where the first equality follows from Ĝn,T,M and GT being right-continuous, and the first

inequality follows from the fact that |I(x ≤ a)− I(x ≤ b)| ≤ I(|x− a| ≤ ϵ) + I(|a− b| > ϵ)

for any x, a, b ∈ R and ϵ > 0. By the continuous mapping theorem and the Portmanteau

theorem, the first term on the right-hand side converges to P(|GT (T )− 1+α| ≤ ϵ), which

can be made arbitrarily small by choosing ϵ small enough. For the second term on the

right-hand side, observe that

sup
x∈R

|GT (x)− Ĝn,T,M(x)| ≤ sup
x∈R

|GT (x)− Ĝn,T (x)|+ sup
x∈R

|Ĝn,T (x)− Ĝn,T,M(x)|.

Since GT is continuous, the first term on the right-hand side converges to zero in prob-

ability (Problem 23.1 in van der Vaart, 1998). The second term on the right-hand side

converges to zero almost surely by the Glivenko-Cantelli theorem as M → ∞ conditionally

on F̂n,τ . Thus,

P
(
sup
x∈R

|GT (x)− Ĝn,T,M(x)| > ϵ

)
→ 0,

as n,M → ∞. Since ϵ > 0 is arbitrary, we have

P(T > ĉ1−α,M) → P(T > c1−α) = α,

as n,M → ∞. This completes the proof. □
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